Archive | Haystack Corner RSS feed for this section

The Needle Issue #20

9 Dec
Juan-Carlos-Lopez
Juan Carlos Lopez
Andy-Marshall
Andy Marshall

By our count, there are now 15 bi-specific antibodies approved by the US Food and Drug Administration (the last peer-reviewed count from 2024 we found chalked up 13). This year has been a bumper year for bi-specifics — antibodies that recognize two molecular targets. Several of 2025’s largest deals have involved assets in this class, including Genmab’s $8 billion acquisition of Merus in September and Takeda’s $11.4 billion splurge on an anti-Claudin18.2 bi-specific antibody and antibody-drug conjugate (ADC) from Innovent Biologics.

Not only is this trend likely to continue, but we predict that it will expand to encompass tri- and multi-specific antibodies, the development of which is an area of intense research activity. Just a couple of weeks ago, South Korea’s Celltrion clinched a $155 million (biobucks) deal for TriOar’s tri-specific ADCs for cold tumors. And at the SITC meeting last month (which we covered in issue 19) tri-specifics were highlighted by no less than five companies: Nextpoint (B7-H7 x CD3 x TMIGD2), CrossBow (cathepsin G peptide x CD3 x CD28), TJ Biopharma (CDCP1 x CD3 x 4-1BB), Biocytogen (DLL3 x CD3 x 4-1BB) and Radiant Therapeutics (potentially tri-specific/trivalent).

Building an antibody that recognizes three or more targets at the same time is not trivial, though. There are multiple technical, clinical and regulatory hurdles that developers need to overcome before the antibody reaches patients. Why, then, go through the trouble of creating a multi-specific antibody when a bi-specific may show clinical benefit? As it turns out, there are several reasons why a multi-specific antibody may be worth the effort.

First, as tumors often escape by downregulating or mutating a single target epitope, a multi-specific antibody may reduce the likelihood of escape by simultaneously targeting multiple tumor antigens. Second, multi-specifics could increase safety and reduce toxicity of a therapy. For example, a multi-specific antibody can be designed to require co-expression of two or more antigens on the same cell to bind effectively. Healthy cells expressing only one antigen would be spared, thereby reducing off-tumor toxicity. Similarly, targeting multiple mechanisms with a single antibody may reduce the need to use several separate drugs, simplifying dosing and reducing risks for patients. Third, and perhaps most important, a multi-specific antibody can simultaneously block several disease pathways, yielding synergistic effects that a bi-specific might not achieve. In solid tumors, for example, tumor heterogeneity, limited immune-cell infiltration and an immunosuppressive microenvironment often result in therapeutic failure. Multi-specific antibodies could combine tumor targeting, immune-cell recruitment and checkpoint modulation in a single molecule.

Perhaps the best example of this comes from the field of T-cell engagers (TCEs). A tri-specific antibody can incorporate not only tumor-cell binding and CD3 engagement, but also a co-stimulatory domain, such as CD28. This can boost T-cell activation, persistence and potency more than a bi-specific that only binds to CD3.

In this regard, a recent paper in PNAS is an excellent example of the power of the approach. A research team from EvolveImmune Therapeutics reports on the development of EVOLVE, a next-generation TCE that integrates CD3 binding with CD2-mediated co-stimulation to enhance T-cell activation, durability and tumor-killing capacity, while avoiding target-independent toxicity.

Conventional CD3-bi-specific TCEs activate T cells through a stimulation signal but often fail to provide the complementary co-stimulation necessary for sustained effector function. This can result in T-cell dysfunction, reduced persistence and limited clinical durability. To address this, Jeremy Myers and his colleagues systematically compared multiple costimulatory pathways and identified CD2 as a superior target owing to its broad expression on naïve, activated and exhausted CD8⁺ T cells, and its sustained expression within tumor-infiltrating lymphocytes.

The team engineered tri-specific antibodies that fuse a CD58 extracellular domain (the natural CD2 ligand — Lymphocyte Function-Associated Antigen 3;LFA-3) to affinity-tuned CD3 binders within an IgG-like format. They showed that integrated CD2 co-stimulation substantially improves T-cell viability, proliferation, cytokine production and cytotoxicity across tumor types.

When optimizing the molecule, they found that CD3 affinity must be attenuated: high-affinity CD3 domains cause target-independent T-cell activation and cytokine release (superagonism), whereas intermediate-affinity variants retain potent tumor-directed killing with reduced off-target activation.

The EVOLVE tri-specifics outperformed matched bi-specifics targeting HER2, ULBP2, CD20 and B7-H4, with increases up to >50-fold in potency, depending on the target. The optimized tri-specifics also showed superior tumor control in vivo, achieving durable tumor regression in humanized mouse models even after cessation of the treatment.

Even though tri- and multi-specific antibodies could offer clear advantages over bi-specifics, they are not without problems. From the technical standpoint, multi-specifics combine multiple binding specificities and often non-natural architectures. This feature increases complexity at every step from discovery to manufacturing. The assembly of IgG-like multi-specifics can result in heavy/light and heavy/heavy chain mispairing leading to heterogeneous products. Although antibody engineers have come up with strategies to address this issue, each solution adds constraints to developability.

Multi-specific antibodies can also have lower expression, cause more host-cell stress and require more advanced cell-line engineering or multi-vector expression systems. Moreover, downstream purification often needs additional steps to separate mis-paired species. Similarly, multi-specific antibodies are often less stable, more aggregation-prone, and more sensitive to formulation conditions, impacting shelf life and immunogenicity risk.

It is also important to show identity, purity and functional activity for each specificity and for the multi-specific activity (that is, simultaneous binding, cell-bridging). So, establishing robust potency assays is often the greatest challenge. What is a good model system to design a development candidate going after several targets at the same time? With each additional binder, complexity in discovery and development increases.

From the clinical standpoint, although multi-specifics can potentially be safer than bi-specific antibodies, as we mentioned above, other toxicological risks exist.

TCEs have been known to trigger cytokine-release syndrome, neurotoxicity, or unexpected tissue toxicity if targets are expressed on normal tissues. First-in-human dosing strategies are therefore critical. Moreover, multi-specifics may have non-linear pharmacokinetics (target-mediated clearance for each target), and dual-target engagement can alter distribution and half-life; selecting a safe, effective dose requires integrated PK/PD modeling and biomarker strategy.

And the headaches don’t stop there. Efficacy of a multi-specific may depend on co-expression of two or more targets. Stratifying patients may therefore complicate trial enrollment and endpoint definition, not to mention that it may be necessary to develop companion diagnostics (already expensive and complex for conventional monoclonal antibodies). And related to this point, when multiple targets are engaged, it can be hard to know which specificity caused an adverse event, complicating risk–benefit evaluation and mitigation.

Finally, from the regulatory perspective, although expectations are still evolving, agencies expect a pharmacological package that reflects multi-specific mechanisms, particularly with regards to toxicology. Regulators routinely require robust control strategies to ensure product consistency. Again, this is going to be more complicated for multi-specifics because small changes in manufacturing can alter pairing or potency.

Multi-specific antibodies are gaining momentum. They represent a potentially powerful technology, but many questions still surround their development. Success may depend on striking the right balance between choosing the appropriate therapeutic indication, identifying the simplest effective format, heavy upfront developability and analytical work, and early interactions with regulators to align on pre-clinical packages.

The Needle Issue #19

25 Nov
Juan-Carlos-Lopez
Juan Carlos Lopez
Andy-Marshall
Andy Marshall

Although therapeutic antibodies represent a $160 billion-dollar annual market and comprise a third of all approved drugs, discovering new antibody molecules remains a labor-intensive process, requiring slow experimental approaches with low hit rates, such as animal immunizations and or the panning of phage- or yeast-displayed antibody libraries. The drug hunter’s dream would be to design an antibody to any target by simply entering information about that epitope into a computer. Now that dream is one step closer with a recent proof of principle peer-reviewed paper published in Nature on work disclosed last year from the team of 2024 Nobel Laureate David Baker. Baker and his colleagues at the University of Washington introduce the first generalizable machine-learning method for designing epitope-specific antibodies from scratch without relying on immunization, natural antibody repertoires, or knowledge of pre-existing binders.

Unlike small-molecule drug development, which has benefitted from an explosion of interest in the use of machine-learning models, in-silico design of antibody binders has lagged far behind. One reason for this is the paucity of high-resolution structures of human antibody–antigen pairs—currently only ~10,000 structures for 2,500 antibody-antigen pairs have been lodged in SAbDab (a subset of the RCSB Protein Data Bank). Most of these structures are soluble protein antigens, but there’s little data to model antibody binders to GPCRs, ion channels, multipass membrane proteins and glycan-rich targets, which are of most commercial interest. Overall, the antibody–antigen structural corpus is orders of magnitude smaller, noisier and narrower than that available for small molecules, lacking information on binding affinities and epitope competition maps via PDBBind/BindingDB/ChEMBL.

For these reasons, most companies have focused on machine learning prediction of developability properties—low aggregation, high thermostability, low non-specific binding, high solubility, low chemical liability/deamidation and low viscosity—for an antibody’s scaffold, rather than in-silico design of the six complementarity determining-regions (CDRs) on the end of an antibody’s two binding arms.

Even so, several recently founded startups have claimed to be using machine-learning models to predict/design antibody binders from scratch. These include Xaira TherapeuticsNabla BioChai Discovery and Aulos Bioscience.

Xaira debuted last year with >$1 billion in funding to advance models originating from the Baker lab. Nabla Bio also raised a $26 million series A in 2024, publishing preprints in 2024 and 2025 that describe its generative model (‘JAM’) for designing VHH antibodies with sub-nanomolar affinities against the G-protein coupled receptor (GPCR) chemokine CXC-motif receptor 7 (CXCR7), including several agonists. In August, Chai announced a $70 million series A financing based on its ‘Chai-2’ generative model disclosed in a preprint that details de novo antibodies/nanobodies against 52 protein targets, including platelet derived growth factor receptor (PDGFR), IL-7Rα, PD-L1, insulin receptor and tumor necrosis factor alpha, with “a 16% binding rate” and “at least one successful binder for 50% of targets”.

Finally, Aulos emerged with a $40 million series A in 2021 as a spinout from Biolojic Design. This program has generated computationally designed de novo CDR binders with picomolar affinities for epitopes on HER2, VEGF-A, and IL-2. The IL-2 antibody (imneskibart; AU-007)—designed to selectively bind the CD25-binding portion of IL-2, while still allowing IL-2 to bind the dimeric receptor on effector T cells and natural killer cells—reported positive phase 2 results in two types of cancer just last week. Absci, another more established company, has also been developing de novo antibodies, publishing a generative model for de novo antibody design of CDR3 loops against HER2, VEGF-A and SARS-CoV-2 S protein receptor binding domain.

Overall, though, computational efforts have largely optimized existing antibodies or proposed variants once a binder already exists. Recent generative approaches have often needed a starting binder, leaving de novo, epitope-specific antibody creation as an unmet goal. The Baker paper now provides a generalizable, open-source machine-learning approach that can find low nanomolar antibody binders to a wide range of targets.

To accomplish this task, the authors use RFdiffusion, a generative deep-learning framework for protein design, extending its capabilities by fine-tuning it specifically on antibody–antigen structures. Their goal was to enable the in-silico creation of heavy-chain variable domains (VHHs), single-chain variable fragments (scFvs), and full antibodies that target user-defined epitopes with atomic-level structural accuracy.

Their approach integrates three major components: backbone generation with a modified RFdiffusion model, CDR sequence design via the algorithm ProteinMPNN, and structural filtering using a fine-tuned RoseTTAFold2 predictor (the authors note that improved predictions can now be obtained by swapping out RoseTTAFold2 for AlphaFold3 developed last year by Google Deepmind and Isomorphic Labs). The refined RFdiffusion model can design new CDRs while preserving a fixed antibody framework and sampling diverse docking orientations around a target epitope. The resulting models generalize beyond training data, producing CDRs unlike any found in natural antibodies.

Baker and his colleagues created VHHs against several therapeutically relevant targets, including influenza H1 haemagglutinin, Clostridium difficile toxin B (TcdB), SARS-CoV-2 receptor-binding domain, and other viral or immune epitopes. High-throughput screening via yeast display or purified expression led to the identification of multiple binders, typically with initial low affinities in the tens to hundreds of nanomolar range. Cryo-EM confirmed near-perfect structural agreement between design models and experimental complexes, particularly for influenza haemagglutinin and TcdB, demonstrating atomic-level accuracy across the binding region and the designed CDR loops. To enhance affinity, the authors used OrthoRep, an in-vivo continuous evolution system, for the affinity maturation of selected VHHs. The affinity of the resulting VHHs improved by roughly two orders of magnitude while retaining the original binding orientation.

Baker and his team further challenged their method with the more difficult problem of de-novo scFv design, which requires simultaneous construction of six CDR loops across two amino acid chains. The team introduced a combinatorial assembly strategy in which heavy and light chains from structurally similar designs were mixed to overcome cases where a single imperfect CDR would compromise binding. This enabled the discovery of scFvs targeting the Frizzled epitope of TcdB and a PHOX2B peptide–MHC complex. Cryo-EM validation of two scFvs showed that all six CDR loops matched the design model with near-atomic precision.

Future work is needed to extend de novo antibody prediction via this method to tougher target classes, such as membrane proteins. Clearly, modeling across all six CDR loops and the heavy and light chains remains a hard problem; indeed, the paper’s marquee result was designing a single scFv where all six CDRs matched the designed pose at high resolution; more generally, scaling reliable heavy- and light-chain co-design beyond a few cases remains an open engineering challenge that future methods will need to solve. For the field to gather momentum, benchmarking efforts like the AIntibody challenge will be needed, together with public efforts to create datasets of negative binding data, akin to those described in a paper published earlier this year.

Overall, the Baker paper is seminal work that establishes a practical and accurate approach to designing epitope-specific antibodies from scratch. It represents a major advance in the development of therapeutic antibody discovery.

The Needle Issue #18

12 Nov
Juan-Carlos-Lopez
Juan Carlos Lopez
Andy-Marshall
Andy Marshall

This year’s Nobel Prize for Physiology or Medicine was awarded to Mary Brunkow, Fred Ramsdell and Shimon Sakaguchi for the discovery of regulatory T cells (Tregs)— white blood cells whose role it is to suppress overactivation of our immune system. The prize was unusual in that Brunkow made her discoveries while leading an industry R&D team at Darwin Molecular (now defunct). Ramsdell and Sakaguchi are also co-founders of two prominent biotech companies developing Treg therapies: Ramsdell’s Sonoma Biotherapeutics is developing autologous Treg therapies against arthritis and hidradenitis suppurativa, together with a LFA3-IgG1 fusion molecule for depleting CD2+ effector T cells; and Sakaguchi’s Coya Therapeutics is developing a low-dose interleukin 2 (IL-2)/CTLA-IgG1 fusion combination for amyotrophic lateral sclerosis and other neurodegenerative disorders; the Nobel prize likely helped boost Coya’s announcement in October to raise $20 million in follow-on funding on the public markets.

Tregs have long attracted the attention of drug developers interested in autoimmune conditions, diseases where the immune system is overactive. But progress in this field has been slow, and the first clinical results for T-reg cell therapies are only now beginning to emerge in liver transplantation and kidney transplantation. (Low-dose IL-2 treatments that promote Tregs have also begun to show promise in lupus and systemic sclerosis patients.)

The overarching idea behind Treg cell therapy has been to isolate these cells from a patient, introduce/upregulate expression of the FOXP3 transcription factor that marks them from other T cells, and expand them before giving them back to the patient.

Early attempts to develop this autologous therapy failed in part because Tregs are less numerous in the peripheral blood than effector CD4/CD8 T cells, difficult to isolate and problematic to expand. Moreover, the isolated Tregs are polyclonal, targeting multiple antigens. Approaches that expanded this unmodified polyclonal population of cells and put them back into patients resulted in a ‘diluted’, clinically insignificant, therapeutic effect.

To address this problem, companies are now turning to leverage advances in the chimeric antigen receptor (CAR)-T cell therapy field. A whole slew of Treg cell therapies is being engineered with CARs or T-cell receptors (TCRs), allowing targeting to specific antigens in specific organs.

As we mentioned above, the most advanced of these are in the organ-transplantation field, where chronic immunosuppression renders patients susceptible to infections that can be lethal. Sangamo Therapeutics’ TX200 and Quell Therapeutics’ QEL-001 are CAR-Treg therapies for renal- and liver-transplant rejection, respectively. These assets, which are in phase 1/2, both bind to human leukocyte antigen HLA-A2, which is exclusively expressed on the transplanted donor organ, ensuring that the Tregs travel exclusively to the place where they are needed. Elsewhere, Sonoma is also developing an autologous CAR-Treg therapy, SBT-77-7101, that targets citrullinated proteins abundant in rheumatoid arthritis (for which Sonoma recently announced positive interim phase 1 data) and the skin condition hidradenitis suppurativa.

A second focus for companies has been on TCR-engineered Tregs. The great theoretical advantages of TCRs over CARs are that 1) they have high sensitivity at low antigen density, 2) they focus exclusively on antigen-presenting cells which then reeducate/suppress effector T cells; 3) they don’t bind soluble antigen and 4) most autoimmune diseases are driven by intracellular proteins presented as processed peptides in the context of HLA. As yet, however, only a few companies are pursuing the approach. One example is GentiBio, which is developing GNTI-122 for type 1 diabetes. This Treg product expresses a TCR targeting a fragment (IGRP 305–324) of the pancreatic islet-specific antigen glucose-6-phosphatase catalytic subunit-related protein (IGRP). Another pioneer in this area, Abata Therapeutics, had also been developing a TCR-engineered Treg therapy (targeting myelin peptide/HLA-DRB1*15:01 for multiple sclerosis); however, the frosty financing environment in the first half of 2025 meant it ran out of cash and Abata closed its doors in August.

One challenge that all Treg cell therapies face is the plasticity of these cells and their tendency to shape shift into effector T cells, a phenotypic change that, in the therapeutic setting, could lower efficacy or even exacerbate pathology. One approach to address this problem has been to modify the cells by overexpressing the transcription factor FOXP3, the master regulator of Treg development. For example, as methylation of the FOXP3 promoter under inflammatory conditions can turn Tregs Into effector T cells, Quell’s Tregs are engineered with a methylation-resistant FOXP3 that compels the cells to remain in their suppressor phenotype. And to bring us back to where we started, Nobel laureate Sakaguchi turns out to be a serial entrepreneur, founding another company, Regcell, that recently relocated from Japan to the US on the back of a $45.8 million financing back in March. The company is using small-molecule CDK8/19 inhibitors that act as epigenetic modulators to lock in FOXP3+ Tregs that show a stable suppressive phenotype in vivo.

But Treg cell therapies still face stiff competition. Ironically, perhaps, from their antithesis: the effector CAR-T cell. Pioneering work by Georg Schett’s group at Friedrich Alexander University Erlangen-Nuremberg has galvanized numerous efforts to develop CAR-T depleters of pathogenic B-cell or plasma-cell subsets in autoimmune conditions. Evidence is growing for the clinical efficacy of this approach in diseases such as lupus or myasthenia gravis.

But the holy grail would be to dispense with cell therapy altogether and promote Treg activity in situ, without the need for purification and modification/expansion outside the body. By focusing on injectable biologics, many companies can bring products to market that are easily accommodated into current clinical practice, dispensing with the need for leukopheresis (an approach alien to most rheumatologists) and the complex logistics of ex vivo cell therapy.

Nektar Therapeutics’ rezpegaldesleukin is a pegylated IL-2 given at low doses that acts on CD25, the high-affinity IL-2 receptor enriched in Tregs. The company recently reported positive phase 2 data in atopic dermatitis. Elsewhere, Egle Therapeutics and Mozart Therapeutics have discovery programs developing bispecific antibody Treg engagers for multiple autoimmune diseases. TrexBio has developed a peptide agonist of tumor necrosis factor receptor 2 (TNFR2), announcing in June the dosing of its first participant in a phase 1 trial for atopic dermatitis and other inflammatory diseases. Zag Bio is another T-cell engager play that recently came out of stealth,

The Treg field can rightly celebrate its Nobel recognition and the progress made towards bringing this cell type to patients. Although it will likely be several years before we gain a full picture of how Treg biology can be leveraged to fight autoimmune disease, the field eagerly awaits the readout from early efficacy trials of cell therapies and potentially an FDA-approved product for the biologics in later development.

The Needle Issue #17

21 Oct
Juan-Carlos-Lopez
Juan Carlos Lopez
Andy-Marshall
Andy Marshall

On September 24, uniQure reported 36-months positive topline data from the phase1/2 study of their candidate AMT-130 for the treatment of Huntington’s disease. AMT-130 consists of viral vector AAV5 and a synthetic miRNA that targets exon 1 of the huntingtin gene. The results showed that AMT-130, directly injected into the striatum at a dose of 6 x 10^13 genome copies per subject, slowed disease progression at 36 months, as measured by the composite Unified Huntington’s Disease Rating Scale and by Total Functional Capacity compared with a “propensity score-matched external control”.

The results have yet to appear in the peer-reviewed literature, and some experts have urged caution in their interpretation, particularly with regard to the use of external historical control groups and the small number of patients (12 have completed the 36-month period). However, uniQure’s data have been widely welcomed as a breakthrough for a field that has experienced its fair share of false starts (most recently Roche/Ionis halting of its phase 3 dosing of tominersen in 2021 after promising phase 1/2a results). Moreover, the findings have bolstered interest in therapeutic approaches targeting exon 1 in the mutant allele in addition to reducing levels of the full-length huntingtin protein.

Huntington’s disease is a triplet repeat disease in which the huntingtin gene’s exon 1 bears the CAG repeat encoding the polyglutamine stretch that defines the pathology. It’s therefore not surprising that the N-terminal part of HTT and its product have attracted attention as drug targets. Broadly speaking, scientists have tried to get at exon 1 in three ways: targeting the gene itself to block transcription, targeting the mutant mRNA to inhibit translation, and targeting the truncated protein that results from the mutant mRNA. A recent review provides a thorough survey of the preclinical work on these three fronts.

From the drug-discovery point of view, the most advanced programs focus on the development of ASOs or RNAi sequences against the CAG repeat in the mutant mRNA. The motivation behind this strategy is in part the realization that transcription of mutant HTTexon 1 results in a shortened 102 nt mRNA that encodes a toxic protein prone to aggregation: HTTexon1.

To explain what goes wrong in RNA splicing, we need to take a quick detour into the biochemistry of mRNA processing. In any cell, pre-mRNA processing is a competition between the splicing machinery (which removes introns from transcribed genes by recognizing an intronic 5′ splice site, branch point, and 3′ splice site) and the machinery that carries out intronic polyadenylation. Intronic polyadenylation cleaves transcripts within introns and adds a poly(A) tail to the shortened exon–intron fragment transcript when intronic sequences like AAUAAA are present together with a downstream U/GU-rich element.

All of the above is important for Huntington’s because, in healthy brains (specifically the striatum), U1 small nuclear ribonucleoprotein (snRNP) is thought to sit on the cryptic polyA sites in intron 1 of HTT, blocking intronic polyadenylation and enabling accurate splicing of introns and production of a full-length (9,500 nt) mature HTT mRNA. In contrast, in Huntington’s patients, increasingly long CAG repeats in the huntingtin pre-mRNA are thought to sequester U1 snRNP, thereby interfering with formation of the spliceosome complex and making cryptic polyA sites accessible. The result is premature termination of transcription within intron 1, resulting in the generation of the the shortened 120 nt HTTexon1 mRNA transcript that encodes an N-terminal 17-amino acid HTTexon1 protein.

Until the UniQure program, most disease-modifying therapies in the clinic have sought to downregulate full-length huntingtin and haven’t discriminated between mutant protein and wild-type protein. The prevailing thinking has been that going after full-length HTT makes sense because both the full-length protein—and fragments of it produced by proteolytic degradation—were likely the main problem.

By targeting exon 1, AMT-130 aims to specifically reduce production of toxic HTTexon1. And several other drug developers have also started to pivot and focus more closely on targeting HTTexon1, with the hope that such approaches might have greater efficacy in reducing huntingtin aggregate nucleation.

Just this year, Alnylam/Regeneron recently took ALN-HTT02 into phase 1b testing. This siRNA is conjugated to a 2′-O-hexadecyl C16 palmitate lipid that enables traversal of the blood brain barrier. It targets a conserved mRNA sequence within huntingtin exon 1, leading to the RISC-mediated degradation of all HTT mRNAs. The approach downregulates both HTTexon1 and full-length HTT — and does not discriminate between the wildtype and mutant alleles.

There are other molecules in development that directly target the expanded CAG repeat in exon 1 that are allele-specific. Vico Therapeutics’ VO659 is an ASO with an allele-preferential mechanism of action, targeting expanded CAG repeats in the mutant transcript and inhibiting translation of the mutant allele via steric block. It is currently in phase 1/2a clinical trials, and the company announced positive interim biomarker data in September 2024.

Meanwhile, in the preclinical space, Sangamo/Takeda are developing a mutant-allele selective approach, focusing on blocking transcription of the huntingtin gene using lentiviral vector delivered zinc finger repressor transcription factors (ZFP-TFs) that target the pathogenic CAG repeat. They have shown that their ZFP-TFs repress >99% of disease-causing alleles while preserving expression of normal alleles in patient-derived fibroblasts and neurons. Lentivirally delivered ZFP-TFs lead to functional improvements in mouse models, opening the door to their potential clinical development.

Haystack is aware of at least three other companies developing therapeutics aimed at reducing the toxic effect of HTTexon1, but details of their programs are scarce. China-based HuidaGene Therapeutics is developing a CRISPR-based gene editing product to fix the mutant allele. Galyan Bio was developing GLYN122, a small molecule directly targeting HTTexon1, but the company seems to have ceased operations. Similarly, Vybion has been developing INT41, a functional antibody fragment against HTTexon1, but its current status is also unclear.

It is sobering that over 150 years’ since the first description of Huntington’s disease, which many think of as the archetypal monogenic disease, that we still lack a definitive understanding of its pathogenic mechanism. We don’t know whether the pathology arises from HTT protein, RNA, DNA or some combination of these. And despite the buzz surrounding HTTexon1, most of the data supporting its relevance to human disease still originates from work in mouse models, which recapitulate only certain aspects of the human disorder. That said, raised levels of HTTexon1 are present in patient brain biopsies, with the longer CAG repeats in individuals with juvenile Huntington’s resulting in higher levels of the truncated transcript.

It will be exciting to follow the progress of UniQure’s AMT-130 as our understanding of where in disease progression, and in which patients, this therapy will be most effective. And beyond HTTexon1, other therapeutics targeting alternative disease pathogenic mechanisms are on the horizon. Last month, Skyhawk Therapeutics reported promising phase 1/2 clinical results for it oral small-molecule splice modifier SKY-0515. Elsewhere, broadening understanding of DNA mismatch repair enzymes and the role of somatic repeat instability in the disease have led to investment in a flurry of startup companies focused on this mechanism. That work is now leading to broader excitement that therapies may become available for other difficult-to-treat triplet repeat diseases like Fragile X syndrome, Myotonic dystrophy type 1 and Friedreich ataxia, as demonstrated by the recent deal between Harness Therapeutics and Ono Venture Investment.

The Needle Issue #16

7 Oct
Juan-Carlos-Lopez
Juan Carlos Lopez
Andy-Marshall
Andy Marshall

Commercial interest in targeted epigenetic therapies — agents that target specific genes without altering bases in their sequence or causing double-strand breaks or even single nicks in the DNA — continues to grow, as underscored by the latest financing announced by Epigenic Therapies. The unique selectivity and specificity of targeted epigenetic therapeutics offers compelling advantages over small-molecule epigenetic drugs, which target a specific epigenetic reader, writer or eraser, but affect genes across the genome and affect many diverse tissues, leading to narrow therapeutic windows that make them difficult to develop for conditions outside of cancer.

Today, Haystack is aware of at least eight private companies (nChroma Bio (resulting from a merger of Chroma and Nvelop), Encoded TherapeuticsEpigenic TherapeuticsEpitor TherapeuticsMoonwalk BioNavega TherapeuticsRegel Therapeutics, and Tune Therapeutics), and two public companies (Modalis Therapeutics and Sangamo Therapeutics) that are pursuing the targeted epigenetic approach against disease (let us know if you know of any others). Another company, Flagship Pioneering’s Omega Therapeutics, went out of business in August after filing for bankruptcy in February. A smaller set of companies are also pursuing targeted epigenetic therapies against RNA modifications.

All of these therapies are designed around an alluring set of simple principles: take a gene-specific DNA-binding domain — zinc-finger proteins (ZFPs), ‘dead’ Cas9 (dCas9) with mutations in its RuvC and HNH endonuclease domains, or transcription activator-like effectors (TALEs) — and tether it via an amino acid linker to an enzymatic effector module. This effector is either an enzyme that directly places or removes a specific epigenetic modification (e.g., TEThistone demethylases or the histone acetyltransferase p300) or a transcriptional activator (e.g., VP16) or repressor (e.g., KRAB).

A particularly compelling application for such treatments is genetic disorders of haploinsufficiency (like Dravet’s) or imprinting disorders (like Angelman’s or Prader Willi). There are also many of these diseases where the therapeutic genes would be too large (>4.0 kb) for a traditional AAV gene-therapy approach; in contrast, epigenetic editing machinery can be packaged into an AAV vector.

Currently, the diseases being pursued by companies include hepatitis Bhypercholesterolemia, epilepsies (SCN1A (Dravet syndrome) and SCN2A), chronic pain, and muscular dystrophies. Those with the most advanced programs are Encoded’s AAV-9 intrathecally delivered SCN1A-targeting zinc finger protein linked to a VP16 activation domain in phase 1 testing for Dravet and Sangamo’s AAV- STAC-BBB-delivered SCN9A-targeting zinc finger protein linked to a KRAB repressor domainin a phase 1/2 trial for patients with chronic pain. In this context, two papers published in the past couple of weeks represent important proofs of the efficacy of targeted epigenetic therapies.

In a first paper published in Nature, the groups of Kevin Bender and Nadav Ahituv at UCSF (scientific co-founders of Regel Therapeutics) sought to test a targeted epigenetic therapy in patients with SCN2A mutations that exhibit decreased NaV1.2 function. These individuals have impaired action potentials, synaptic transmission and manifest diverse neurological symptoms and seizures, with few therapeutic options, beyond symptomatic anti-seizure medications that have a dizzying range of debilitating side effects.

The UCSF teams leveraged conditional genetic knock-in technolgoy or CRISPRa technology — an AAV-delivered SCN2A-promoter-targeting dCas9 fused to a VP16 activator domain — to upregulate transcription of the SCN2A gene. Using either approach, they were able to boost transcript levels from the healthy SCN2A allele, ameliorating electrophsiological deficits and chemical-induced seizure activity in Scn2a+/− mouse models. Importantly, these effects were seen in adolescent mice, which conventionally have been thought to be too old to respond to treatment. This suggests that rescue of normal dendritic excitability with epigenetic agents at later stages of life might be capable of restoring neuronal function, with implications for patients.

In a separate set of experiments, the authors showed that their epigenetic approach was able to rescue neurophysiological activity in haploinsufficient neuron-like cells from SCN2A-knockout human embryonic stem cells. This cross-species reproducibility provides further confidence that CRISPRa-mediated upregulation could be translated into human treatments.

In a second paper in Nature Biotechnology, a team from Epigenic Therapeutics (Shanghai, China) describes the design and validation of optimized epigenetic regulators (EpiRegs) to silence genes in a precise, durable way without altering genomic DNA. Epigen’s Shaoshai Mao and his collaborators at the Chinese Academy of Sciences and the First Affiliated Hospital of Anhui Medical University tested combinations of TALE- and dCas9-based systems, systematically optimizing effector domains and fusion architectures, looking for effective regulators of gene expression. The best-performing variant, EpiReg-T (a TALE-based system, which eliminates the need for a guide RNA), achieved 98% silencing of target genes in mice, substantially outperforming dCas9-based versions.

Using lipid nanoparticles (LNPs) for delivery, a single administration of EpiReg-T in macaques induced long-term repression of the PCSK9 gene, which encodes a validated target for the treatment of hypercholesterolemia. EpiReg-T reduced PCSK9 expression by >90% and LDL-cholesterol by about 60%, with effects persisting for nearly a year (343 days).

Mechanistically, the team used whole-genome bisulfite sequencing and cleavage under targets and tagmentation (CUT&Tag) to show that EpiReg-T induced stable DNA methylation and repressive histone marks at the PCSK9 promoter. The silencing persisted even after liver regeneration and could be reversed by targeted epigenetic activation. Multiomic analysis in mice, macaques and human hepatocytes confirmed high specificity of the manipulation and minimal off-target effects. Overall, these finding, as well as similar results reported in April by Chroma Medicine, establish epigenetic editing as a promising therapeutic platform for durable and reversible gene silencing.

Overall, targeted epigenetic therapies offer clear safety advantages over small molecules that indiscriminately target all genes under the control of an epigenetic eraser or writer enzymes. They avoid the potential risks associated with creating single- or double-strand DNA breaks associated with CRISPR/Cas9 gene, base or prime editing therapies. And they avoid the insertional mutagenesis risks associated with traditional viral gene therapies. What’s more, in applications requiring gene upregulation in haploinsufficient disease, these approaches maintain the endogenous regulatory context of the functional allele. This is in stark contrast to traditional gene-therapy replacement approaches, where overexpression of an introduced therapeutic gene can often lead to toxicities and immunogenecity.

Of course, questions still linger around the persistence of the changes elicited by these epigenetic agents. Will they persist in patients for long periods — for years or even decades? If they can, then epigenetic therapy may offer compliance advantages over small molecules, antibodies, ASOs or even siRNAs, which have treatment durations of six months or less.

Like all genetic medicines, though, delivery remains the key headache. Thus far, AAV vectors, lipid nanoparticles or ribonucleoproteins (RNP) have all been explored to deliver epigenetic therapies (with some evidence that RNPs might have advantages because they can result in higher dCas9 dosages within target cells). For AAV vectors, the fact that targeted epigenetic therapy might only need to be given once might be an advantage in terms of immunogenicity/neutralization concerns against the vector.

A broader point is that the safety profile of targeted epigenetic editors may offer advantages if AAV vectors are used as delivery vehicles: if the epigenetic agents themselves can be delivered at high dosage (given their intrinsic favorable safety profile and presumed maximal tolerated dose), perhaps AAV vector dosages could be lower than current practice. With many current gene therapies requiring dosages of 1013 or more viral particles/kg in patients, it is increasingly becoming clear that unacceptable liver toxicities arise from the virus at these levels in clinical studies. It will be interesting to follow this space as more agents enter human testing.

The Needle Issue #15

23 Sep
Juan-Carlos-Lopez
Juan Carlos Lopez
Andy-Marshall
Andy Marshall

On September 11, the Lasker Foundation awarded the 2025 Lasker~DeBakey Clinical Medical Research Award to Michael Welsh, Jesús González and Paul Negulescu for discoveries that led to the development of Trikafta, a triple combination of cystic fibrosis transmembrane conductance regulator (CFTR) potentiators and correctors to treat cystic fibrosis. This award recognizes the contribution of Trikafta to improving the quality of life of ~90% of the 40,000 people living with this condition in the United States, reducing infection-related hospitalizations and lung transplants, among other benefits.

But what about the other 10% of patients who don’t respond to Trikafta, many of whom carry so-called Class I alleles that cannot be rescued by this drug combination? Although a lot of progress has been made, several obstacles lie in the path of effective medicines for people who produce no, or negligible amounts of, CFTR protein.

It should come as no surprise that the main therapeutic strategies for Class I alleles aim to put missing CFTR back into lung cells. Among these strategies, mRNA delivery is the most advanced. VX-522, an RNA therapeutic program from Vertex and Moderna currently in Phase 2, is an inhaled drug that aims to deliver full-length CFTR mRNA to the lung using lipid nanoparticles (LNPs). Two related, competing mRNA delivery programs are at a similar stage of clinical development: ARCT-032 by Arcturus Therapeutics using their LUNAR LNPs; and RCT-2100 by ReCode Therapeutics, which uses a lung-targeted SORT (selective organ-targeting) LNP.

A key feature of RNA-based therapies is that any therapeutic benefit would likely be transient, requiring periodic administration of the medicine to achieve sustained effects. Gene therapy and gene editing have the potential to be a curative, “one and done” procedure. Thus far, however, only gene therapy programs have advanced far enough to be in human testing.

Of these, 4D Molecular Therapeutics’ 4D-710 and Spirovants’ SP-101 use different AAV subtypes designed to optimize delivery to airway basal epithelial cells of a CFTR minigene that lacks the regulatory domain. Both projects are in Phase 1/2 of clinical development.

As the large size (6.2 kb) of the CFTR transgene exceeds the packaging capacity of AAV vectors, Krystal Biotech and Boehringer Ingelheim have launched Phase 1/2 clinical programs using viral vectors with a greater payload capacity: KB407 is a re-dosable herpes simplex virus (HSV)-1 vector with a cargo capacity >30 kb that delivers two copies of the CFTR gene to lung epithelial cells using a nebulizer. BI 3720931 is Boehringer’s inhaled lentiviral vector pseudotyped with Sendai virus F and HN envelope proteins (rSIV.F/HN) engineered to deliver a single copy of the CFTR gene. Further behind in the pipeline, Carbon Biosciences’ CGT-001 is a nebulized non-AAV parvovirus-based vector capable of delivering full-length CFTR gene. Thus far, it has been tested in nonhuman primates and in human bronchial cells in culture.

Companies are also pursuing oligonucleotide therapies to modify disease-causing mutations at the RNA level. SPL84 is an inhaled antisense oligonucleotide (ASO) addressing a splicing defect (cryptic exon; class V mutation) in the ~1,600 CF patients who carry the 3849+10kb C→T mutation. SpliSense has advanced the ASO into phase 2 testing, but it also has in preclinical development an exon-skipping ASO against the class I mutant W1282X. By masking the mutant premature termination codon in exon 23, SP23 induces the splicing machinery to skip exon 23 and stitch together exon 22 and exon 24, forming a partially functional CFTRΔex23 protein.

Gene editing is also beginning to appear on the therapeutic horizon. In July, Prime Medicine announced it had received $25 million in funding to advance prime editors, with a lead program focusing on G542X. Last year, Intellia Therapeutics and ReCode Therapeutics also announced a strategic collaboration to combine the CRISPR pioneer’s Cas9 DNA ‘writing’/insertion technology with Recode’s SORT LNPs. Academic groups have now shown that G542X correction is possible using inhaled LNP- or virus–like particle-delivered adenine base editors. And for RNA editing, at this year’s American Society of Gene & Cell Therapy Wave Life Sciences reported their oligo-based ADAR editors could achieve 21% correction (EC50 = 376nM) of CFTR W1282X nonsense mutations. This is likely a sliver of all the therapeutic activity underway; other programs are targeting mucus itself, which is much thicker than in healthy individuals. If we missed any drug-discovery projects in this space, please let us know!

Despite the plethora of programs, developing genetic therapies against cystic fibrosis patients with class I CFTR mutations faces some stiff translational challenges. For starters, targeted delivery of drugs to lung tissue remains a work in progress. The optimal cell type to be targeted by gene therapy/editing remains an open question, especially as the community continues to identify new cell types in the lung; is it enough to target the more prevalent epithelial cells (alveolar type 2 cells), or will it be necessary to target rarer stem cells (alveolar type 1 cells) to see a long-lasting therapeutic effect? What about the contribution of genetic modifiers and other ion channels known to affect airway dysfunction in CF airway epithelial cells? Also, how to figure out the pharmacokinetics and pharmacodynamics of these disease-modifying therapies in lungs and measure delivery in patients? Specifically, establishing protein expression levels after inhaling a DNA- or RNA-based product would likely require a bronchial biopsy, which is impractical particularly in this fragile patient population.

Last, not unlike most pathologies, new animal and in vitro models with predictive value need to be developed. The use of human bronchial epithelium culture is not as predictive of the efficacy of genetic therapies as it has been for small molecules. At present, the ferret is the gold standard disease model. But it is a time-consuming, challenging animal model, which is only supported by a few groups. All of which slows the path to clinical translation.

Six years after the approval of Trikafta, patient foundations like the CF Foundation, Emily’s Entourage, and the Cystic Fibrosis Trust are devoting increasing resources to translational research to push forward treatments for patients with CFTR Class I mutations who do not respond to potentiators and correctors. The Lasker recognition of the science that led to Trikafta will surely inspire researchers working on those projects to overcome the remaining hurdles.

The Needle Issue #14

9 Sep
Juan-Carlos-Lopez
Juan Carlos Lopez
Andy-Marshall
Andy Marshall

It is now nearly a decade since Dublin-based startup Inflazome burst onto the scene with the description of MCC950, the first nanomolar selective inhibitor of the inflammasome. Inflammasome-mediated low-grade inflammation has been associated with cancers, numerous chronic complex diseases—including inflammatory bowel diseasearthritismetabolic dysfunction-associated steatohepatitis (MASH)atherosclerosisAlzheimer’sParkinson’s and ALS—as well as rare autoinflammatory diseases, such as cryopyrin-associated periodic syndromes (CAPS). There is a wealth of compelling human genetic evidence from Muckle-Wells syndrome and other autosomal dominant familial genetic diseases showing gain-of-function mutations in NLRP3 are causative of autoinflammatory disease.

Given the ‘pipeline in a product’ potential of drugs targeting this pathway, big pharma has shown considerable interest, with Genentech/Roche snapping up Jecure Therapeutics for an undisclosed amount, and both Novartis and Roche splashing out hundreds of millions of dollars for pioneer companies IFM Tre and Inflazome, respectively. In 2022, Novo Nordisk licensed Ventus Therapeutics’ peripherally restricted NLRP3 inhibitor in a deal worth up to $703 million, lending weight to pharmacological inhibition of NLRP3 as a complement to glucagon-like peptide-1 agonists (GLP-1s) in cardiometabolic disease. And with several programs now entering the clinic, investment activity in the area has continued, with Enveda’s announcement last week of a $150 million series D round to fund a phase 1 trial for ENV-6946, an orally delivered gut-restricted small molecule targeting the NLRP3/tumor necrosis factor-like cytokine 1A (TL1A) pathway in inflammatory bowel disease.

Today, Haystack counts at least 17 independent companies pursuing inflammasome therapeutics (AC ImmuneAzome TherapeuticsBioAge LabsCardiol TherapeuticsEpicentRxEnvedaHalia TherapeuticsInflammX TherapeuticsInsilico MedicineNeumora TherapeuticsNodTheraOlatec TherapeuticsShaperonVentus TherapeuticsVentyx BiosciencesZyVersa Therapeutics and Zydus LifeSciences) and 8 programs now in clinical testing specifically targeting the key inflammasome component NLRP3.

While drugmakers have traditionally targeted downstream extracellular mediators of the inflammasome pathway (canakinumab or rilonacept against IL-1β or anakinra to block IL-1 receptor), NLRP3 represents a key upstream intracellular signaling hub, activated by innate immune pattern-recognition receptor (Toll like receptors 2/4) signaling via MyD88 and NFkappaB. Once activated, NLRP3 monomers unfold and associate into a massive 1.2 MDa oligomeric supracomplex with three other proteins: ASC, NEK7 and caspase 1. The mature complex then cleaves and activates proinflammatory cytokines interleukin (IL)-1β and IL-18 and primes gasdermin D to instigate cell pore formation and cell death via pyroptosis.

Discovering effective drugs against NLRP3 has proven challenging. The first NMR structure was obtained in 2016, but the structural basis for how NLRP3 ring-like oligomers associate with intracellular membranes and how its pyrin domains associate with ASC to orchestrate speck formation and caspase activation have only recently been elucidated. Thus far, the majority of small-molecule inhibitors (e.g., Inflazyme’s archetypal MCC950 and inzolemidZydus’s (ZYIL1)Olatec’s OLT117 and Jecure Therapeutics’ GDC-2394) form hydrogen bonds via a sulfonylurea group to NLRP3’s NACHT domain nucleotide-binding motifs, thereby obstructing ATP hydrolysis. Other companies are taking a different tack: thus, Halia Therapeutic’s small-molecule inhibitor orniflast and Monte Rosa Therapeutics’ MRT-8102 molecular glue target NEK7 rather than NLRP3.

But it has been less than straightforward to identify compounds with sufficient potency to target this pivotal innate immune signaling pathway without debilitating off-target effects. Indeed, several of the first wave of compounds entering the clinic have been dogged by serious toxicities, including liver problems (MCC950 and GDC-2394) and hypoglycemia (glyburide). Now, a team led by Rebecca Coll (Queen’s University Belfast) and Kevin Wilhelmsen (of BioAge Labs) reports in The Journal of Experimental Medicine the discovery and characterization of BAL-0028, a novel and selective small-molecule inhibitor of the human NLRP3 inflammasome.

Unlike previously studied inhibitors, BAL-0028 acts through a unique mechanism of action; it binds NLRP3’s NACHT domain at a site distinct from other inhibitors that act by directly interfering with ATPase activity. BAL-0028 has nanomolar potency against human and primate NLRP3 but, remarkably, has weak activity against the mouse target, highlighting species-specific differences.

As BAL-0028 showed very high plasma protein binding in mice, limiting its use in vivo, the team developed a derivative, BAL-0598, with improved pharmacokinetic properties. In a humanized NLRP3 mouse peritonitis model, BAL-0598 effectively reduced IL-1β and IL-6 production, confirming its anti-inflammatory activity in vivo. Importantly, both BAL-0028 and BAL-0598 inhibited hyperactive NLRP3 mutants associated with autoinflammatory diseases, in some cases more effectively than Vertex’s VX-765, a caspase 1 inhibitor, and compounds like MCC950, one of the best characterized NLRP3 inhibitors available.

The novel mechanism of action of BAL-0028 and BAL-0598 would suggest their off-target effects may be different from those associated with other NLRP3 inhibitors blocking ATP hydrolysis. The concern that such compounds might also bind other members of the NOD/NLR family (e.g., NLRP1, NLRP4 or AIM2 inflammasomes) is mitigated by most published studies indicating that NLRP3’s unique fold around the ATP binding site makes small-molecule binders selective for this family member alone. The most likely explanation from trials published to date is that the observed toxicities are associated with small molecule chemotype rather than any NLRP3 class-specific problem. In any case, the findings from this study support further investigation of these compounds as candidates for treating inflammatory and age-related diseases where NLRP3 plays a role. The race to develop a safe and effective NLRP3 inhibitor is on, with big pharma billion-dollar bets and startups jostling to create best-in-class assets across cancer, cardiovascular, neurodegenerative and metabolic disease.