Tag Archives: nutrition

The Needle Issue #11

22 Jul
Juan-Carlos-Lopez
Juan Carlos Lopez
Andy-Marshall
Andy Marshall

Haystack chat

Molecular glue degraders (MGDs) are currently having a bit of a moment. In the first half of 2025, the number of papers describing such compounds has doubled.

2025 has also witnessed a whole raft of MGD startups publish research related to their programs:

Startup (location) Scientific founders (location) 2025 paper
Ambagon Therapeutics (Eindhoven, The Netherlands) Michelle Arkin (UCSF, San Francisco, CA), Luc Brunsveld and Christian Ottman (Eindhoven University of Technology) Molecular glues of the regulatory ChREBP/14-3-3 complex protect beta cells from glucolipotoxicity
Cyrus Therapeutics (Seoul, South Korea) Keon Wook Kang (Seoul National University, Seoul, South Korea) High cereblon expression in neuroendocrine cancer confers vulnerability to GSPT1 molecular glue degrader
Matchpoint Therapeutics (Cambridge, MA) Nathanael Gray and Tinghu Zhang (Stanford University, Stanford, CA) and Edward Chouchani and Jianwei Che (Dana Farber, Boston, MA) Structure-guided design of a truncated heterobivalent chemical probe degrader of IRE1α
Monte Rosa Therapeutics (Boston, MA) Rajesh Chopra and Ian Collins (The Institute of Cancer Research and Cancer Research UK); Nicolas Thomä (Friedrich Miescher Institute, Basel, Switzerland) Structure-guided strategy for identifying human proteins predicted to be compatible with cereblon-based molecular glue degraders (see below for further details)
Oniria Therapeutics (Barcelona, Spain) Héctor G. Palmer, Esther Riambau, Isabel Puig, Josep Tabernero, Xavier Barril, and Carles Galdeano (Vall d’Hebron Institute of Oncology, University of Barcelona and ICREA) Cullin-RING ligase BioE3 reveals molecular-glue-induced neosubstrates and rewiring of the endogenous Cereblon ubiquitome
Proxygen (Vienna, Austria) Georg Winter (CeMM Research Center for Molecular Medicine, Vienna, Austria) Selective analysis of protein degradation by mass spectrometry enables degradome analysis and identification of direct protein substrates of molecular glues
Proteovant Therapeutics (King of Prussia, PA) Shaomeng Wang (University of Michigan, MI) Development of PVTX-405 as a potent and highly selective molecular glue degrader of IKZF2 for cancer immunotherapy
Sartar Therapeutics (Helsinki, Finland) Olli Kallioniemi and Harri Sihto (University of Helsinki, Finland) Pharmacokinetic profile and in vivo anticancer efficacy of anagrelide administered subcutaneously in rodents
SEED Therapeutics (King of Prussia, PA) Ning Zheng (University of Seattle, WA), Michele Pagano (New York University, NY) and Avram Hershko (Technion Institute of Technology, Haifa, Israel) UM171 glue co-opts CRL3 RING E3 ligase substrate coreceptor KBTBD4 as well as HDAC1/2, resulting in degradation of CoREST corepressors
Shenandoah Therapeutics (South San Francisco, CA) Jerry Crabtree and Nathanael Gray (Stanford University, Stanford, CA) A bivalent molecular glue linking lysine acetyltransferases to redirect p300 and CBP to activate programmed cell death genes normally repressed by the oncogenic driver, BCL6
Zenith Therapeutics (Basel, Switzerland) Daniel Nomura (UC Berkeley, CA); Nicolas Thomä (Friedrich Miescher Institute, Basel, Switzerland), and Martin Stahl (former Roche, LifeMine) Putative molecular glue niclosamide acts via ubiquitin E3 ligase CRL4AMBRA1-mediated degradation of cyclin D1 following mitochondrial membrane depolarization

On the commercial front, the march of startups receiving funding shows no sign of slowing down, with Trimtech Therapeutics and Booster Therapeutics raising substantive rounds. The first few months of the year have also seen the continuation of last year’s pharma MGD scramble to license programs from Triana Biomedicines and Neomorph, with deals based around molecular glues from Abbvie and Merck targeting Neomorph and Springworks, respectively.

In June, one of the flagship developers, Kymera Therapeutics, priced a $250.8 million follow-on offering (no mean feat in the present market) after announcing positive phase 1 safety data for KT-621, a novel MGD against STAT-6, and clinching a deal with Gilead Sciencesforanother small-molecule glue targeting cyclin-dependent kinase 2 (CDK2). All in all, we count 27 companies currently active in this preclinical space (Ambagon TherapeuticsAmphista Therapeutics, Booster Therapeutics, Captor TherapeuticsCyrus TherapeuticsDegron TherapeuticsDunad TherapeuticsF5 TherapeuticsFrontier MedicinesLifemine TherapeuticsMagnet Biomedicine,Matchpoint TherapeuticsMontara TherapeuticsMonte Rosa Therapeutics, Neomorph, Oniria TherapeuticsProxygenSartar TherapeuticsSEED Therapeutics, Shanghai Dage Biomedical Technology, Shenandoah TherapeuticsSK Biopharmaceuticals (Proteovant Therapeutics),Triana,Trimtech,Venquis TherapeuticsYDS Pharmatech, and Zenith Therapeutics). There are likely more.

Unlike their more recent cousins, the PROTACs (proteolysis targeting chimeras), MGDs have a long history. The archetypal MGD, thalidomide, was discovered back in the 1950s. From the late 1990s, a new generation of immunomodulatory imide drug (IMiD) derivatives of thalidomide were synthesized, culminating with the approvals of lenalidomide and pomalidomide for myeloma (which formed the basis for the Celgene (now BMS) franchise).

Unlike PROTACs, which use two ligands with a linker and tend to be rather unwieldy, MGDs are small, single compounds that induce conformational changes in E3 ubiquitin ligases and target proteins, reshaping both to enable binding. The vast majority of MGDs bind Cereblon (CRBN), leading to ubiquitination of the protein of interest and degradation in the 26S proteasome, although work is progressing to broaden MGD action to some of the other 600 or so E3 ubiquitin ligases (e.g., DCAF11,15 or 16DDB1SIAHKEAP1VHLβ-TrCPNedd1 and, just last week, TRIM21).

A key challenge in finding new MGDs has been a lack of understanding of the structural rules whereby MGDs turn their target proteins into CRBN ‘neosubstrates’, which has meant MGD ‘hit-finding’ is much more challenging, with fewer degrees of freedom than PROTACs.

What drug hunters have established is that many protein targets of glues contain a β-hairpin structural motif known as the ‘G-loop’. When a MGD brings a target together with CRBN, one end of the MGD interacts with a binding pocket in the C-terminal domain of CRBN, while the other end protrudes from the pocket and interacts with the G-loop (part of the so-called ‘degron’) in the neosubstrate. But how many proteins possess the β-hairpin G-loop or whether the loop is strictly necessary for MGD action have remained open questions. A recent study by Monte Rosa Therapeutics’ scientists starts to tackle these issues, disclosing a large cadre of potential new substrates for CRBN, some of which depart from the canonical β-hairpin G-loop, radically expanding MGD target space.

To map the full range of proteins potentially recruitable by CRBN through MGDs, the team led by John Castle and Sharon Townson developed computational algorithms to search for β-hairpin G-loop motifs in protein structures from two databases: Protein Data Bank and AlphaFold2. This approach resulted in 1424 candidate proteins, some of which were experimentally validated in MGD assays. The list included previously known neosubstrates, but also new proteins such as NEK7—a protein of interest as an autoimmunity target.

The researchers then wondered if the full β-hairpin structure of the G-loop is required for CRBN recognition and rescreened the structure databases looking for a minimal, structurally defined helical G-loop motif. This resulted in the identification of 184 additional potential neosubstrates, including mTOR, a well-established therapeutic target for drugs like rapamycin and sirolimus. Crystallographic data showed that the binding of this helical G-loop to CRBN is similar to that of the canonical β-hairpin G-loops.

As these protein–protein interactions have been well characterized, the team then tried to identify an even wider set of potential neosubstrates, looking now for proteins with sequences that might result in surfaces with electrostatic properties similar to known CRBN interactors, independently of secondary structure and the existence of G-loops. Using surface-matching algorithms, they identified and validated VAV1 (another autoimmune disease target) as a CRBN neosubstrate, providing compelling evidence that G-loops are not strictly necessary for the action of MGDs.

These findings show that CRBN recruitment through MGDs can be driven by a broader set of structural features than previously thought. The identification of a large number of neosubstrates potentially opens up a whole new set of previously ‘undruggable’ targets to MGDs (>1,600 proteins from many target classes, according to the Monte Rosa team).

The big questions, though, are still ahead. How will drug developers mitigate the risks of ‘off-tissue’ toxicity as this swathe of novel MGD compounds and new targets make their way into the clinic?One answer to the toxicity concern is molecular glue antibody conjugates (MACs), which can better localize glues to the tissue of interest. But that’s a subject for a whole other future Haystack Chat!

Pullan’s Pieces #2 – Top Drug Sellers by Geo

15 Jul

By Eric Hayes

What do analysts think will be the top 10 drugs in the year 2031 (as searched in GlobalData)?

Top 10 in the US in 2031 (USD Millions)

In the US analyst forecasts for 2031, obesity dominates (with immunology, derm and infection for other TAs). Along with the obesity peptides are 2 small molecules and 2 MAbs. The sales are in the tens of billions.

Top 10 in Europe (USD Millions)

In Europe, along with the obesity drugs and dupixent in derm, we see the oncology ADC Enhertu, the ang2 ophthalmology drug Vabysmo, a CNS CD20, and a GI integrin in the top 10. Sales are in the single digit billions.

Top 10 in Japan (USD Millions)

In Japan, obesity is not visible in the top 10. An anti-infective tops the list, followed by CNS, oncology, GI and including heme disorders. There are companies not in the top 20 for global sales. Most of the top 10 have sales below $1B.

Top 10 in China (USD Millions)

For China, obesity is back in the top 10, but Gardasil, an oncology HPV vaccine tops the list. Local company “fast followers” are apparent and most of the top forecasted drugs are not yet launched (presumably a reflection of the rapidly evolving pharmaceutical environment). To get into the top 10, sales are above $500M.

Conclusion: The marketplace for drugs shows considerable variation in different regions around the world.

The Needle Issue #10

15 Jul
Juan-Carlos-Lopez
Juan Carlos Lopez
Andy-Marshall
Andy Marshall

Just over a week ago, AbbVie paid $2.1 billion for Capstan Therapeutics’ in vivo anti-CD19 chimeric antigen receptor (CAR)-T cell therapy (CPTX2309) for B cell-mediated autoimmune disorders, which is currently in phase 1 testing. In the past few days, EsoBiotec (acquired by AstraZeneca earlier in the year) also published its first clinical data on a lentiviral-delivered anti-B-cell maturation antigen (BCMA) CAR-T approach (ESO-T01) for multiple myeloma, detailing responses in four patients, two of whom showed complete remission. With a host of other companies working on in vivo delivery into endogenous T cells—including Interius BioTherapeuticsUmoja Biopharma, and Orna Therapeutics, the field of in vivo delivered CAR-T cells appears poised at a tipping point.

Since transforming the face of cancer treatment in 2017, autologous CAR-T cell therapy has been dogged by logistical issues that have limited commercial rollout and increased costs—the need for leukapheresis, laborious cell harvesting, heterogeneous cell expansion, lengthy turnaround times, and inconsistency of batches—with access limited to just a few clinical centers. Extensive waiting lists can mean many patients die before even being treated, which has driven the search for ex vivo approaches that shorten manufacturing times using fully closed systems and/or miniaturization. Given these challenges, delivery of a CAR-encoding mRNA to a T cell in vivo could be a game-changing technology: No need for viral vectors; no leukapheresis/chemo; no ex vivo manipulation, no requirement for multiple patient hospital visits; no convoluted training of personnel; and no risk of second primary T-cell cancers due to insertional mutagenesis. This last issue has loomed over the field, with all CAR-T therapies carrying black box warnings, although at the end of June the FDA removed all requirements for Risk Evaluation and Mitigation Strategies (REMS).

Writing in Science, the founding team of Capstan Therapeutics, headed by Carl June and Bruce Levine at the University of Pennsylvania and Haig Aghajanian of Capstan, report proof of concept data that functional CAR T cells with antitumor activity can be produced in animal models without any ex vivo manipulation. A key breakthrough in their effort was the development of lipid nanoparticles (LNPs) specifically designed to target T cells and to overcome the propensity of LNPs to accumulate in the liver. To avoid this problem, the authors screened a set of ionizable lipids to identify L829, a lipid that incorporates a tertiary amine headgroup that reduces non-specific interactions with the hepatic system due to its pH-dependent protonation and neutral charge. Ester cleavage sites in the lipid also promote rapid breakdown in, and clearance from, hepatocytes. A final step was to decorate L829 LNPs with a mAb targeting CD5, a T-cell specific marker. The resulting LNP showed limited liver uptake in rodents and non-human primates compared with control LNPs.

To test the potential of L829-containing LNPs to generate functional CAR-T cells, the team engineered them to incorporate 1) mRNA encoding a CAR that binds CD19 on B cells and 2) an antibody targeting CD8+ T cells. These CD8-L829-CD19 targeted (t)LNPs successfully delivered the mRNA in vitro to CD8+ T cells from healthy subjects and from people with B cell-mediated autoimmune diseases. In vivo, these CAR T cells had anti-tumor activity in a humanized mouse model of B cell acute lymphoblastic leukemia.

In cynomolgus monkeys that received repeated doses of CD8-L829 tLNPs containing anti-CD20 CAR mRNA (instead of anti-CD19, which is not cross-reactive between human and monkey), sustained B-cell depletion was observed that lasted for one month. Importantly, reconstituted B cells were predominantly naïve, implying an immune reset — a key therapeutic goal in autoimmunity.

The Capstan in vivo mRNA-encoded CAR T platform eliminates the need for ex vivo manipulation and lymphodepleting conditioning. It avoids the risks often associated with the use of viral vectors that integrate into the genome. It also is transient, allowing dosages to be optimized and quickly stopped if patients suffer adverse events associated with neurotoxicity or cytokine-release syndrome. It will be interesting to see whether the approach is scalable and whether it can open up conditions where long-term CAR-T cell persistence might not be necessary, such as autoimmune disease.

Going forward, an important question will be to determine the potential immunogenicity of the tLNP formulation (especially as the mRNA treatment may be given multiple times), and whether tLNPs cause elevations of human liver enzymes like alanine transaminase or aspartate aminotransferase. Liver toxicity of a novel liposome formulation already caused a clinical hold for Verve Therapeutics’ base editing therapy last year. Future work will also need to define optimal dosing, durability, and long-term safety of this approach. But the work of June, Aghajanian and their colleagues is a compelling advance promising a new era of widely available adoptive T-cell therapies for B-cell driven hematological cancers and autoimmune conditions. A single dose of any of the seven currently approved commercial ex vivo CAR-T therapies costs ~$500,000. A vial of an in vivo treatment is likely to cost an order of magnitude less.

Pullan’s Pieces #1 – Organ on a Chip

1 Jul

Acceleration of laboratory-based technical and computational cross-fertilization, and ethical and cost pressures on regulatory bodies and therapeutic innovators is driving advancements in preclinical human-based technologies.

Organ (Lab)-on-chip (OoC/LoC) is one of the most striking examples of new translational research technology expansion with ~35% CAGR expected over the next decade (below).  

Collaborations between academia and CRO’s are driving improvements in organoid technology for the field of oncology broadly and are expected to improve OoC adoption.  Academic innovation using commercial OoC technology is also advancing applications in specific indications in oncology.  CRO’s continue to build off established uses in ADME and toxicology to explore R&D applications in oncology space and have even combined organ systems to support elaboration of multiple drug parameters in a single assay.

DEALS

The Tara Biosystems – Valo Health deal is a nice example of how an organ-on-a-chip technology approach has driven collaborations, acquisitions and deals:

  • Tara Biosystems and GSK collaborate on CV drug profiling (2019)
  • Valo Health acquires Tara Biosystems for CV OoC platform (2022, ~$75M upfront)
  • Valo and Novo Nordisk sign CV drug discovery deal (2023, $60M upfront, $2.7B total)

EmulateTissUse and Mimetas have also been backed by strong big pharma collaborations (AstraZeneca, Bayer, Roche) and funding rounds.

The Needle Issue #9

1 Jul
Juan-Carlos-Lopez
Juan Carlos Lopez
Andy-Marshall
Andy Marshall

Drug development efforts targeting the constitutive 26S proteosome have led to the development of several important multiple myeloma (MM) and mantle cell lymphoma treatments, including the first landmark FDA approval of Millennium Pharmaceuticals’ (now Takeda) dipeptide boric acid Velcade (bortezomib) in 2003 and second-generation molecules, such as Amgen/Ono Pharmaceutical’s irreversible inhibitor Kyprolis (carfilzomib) and Takeda’s orally available inhibitor Ninlaro (ixazomib). Second-generation versions of these ‘pan-proteosome’ drugs have longer duration of effect, reduced peripheral neuropathy and increased safety in renally impaired patients, but may cause gastrointestinal and cardiac toxicity. This toxicological profile has shifted attention to developing inhibitors selective for an alternative form of the core 20S proteosome—the immunoproteasome, which processes peptides for presentation to CD8+ T cells in the MHC-I complex and is constitutively expressed only in hematopoietic cells, induced in immune cells stimulated in the presence of IFN-γ, and upregulated in certain cancers like MM.

Currently, Kezar Life Sciences’ is furthest along in development; in April, it completed a phase 2a trial in autoimmune hepatitis of zetomipzomib (KZ-616), a small-molecule that inhibits both the immunoproteasome core particle component beta subunit 8 (PSMB8; LMP7/β5i) and PSMB9 (LMP2/β1i). Merck kGaA (Darmstadt, Germany) is also pushing forward with a phase 1 clinical program of M3258, a small-molecule inhibitor specific for PSMB8 and intended for use in MM (Principia Biopharma’s selective PSMB8 inhibitor was swallowed up by Sanofi in 2020 when the pharma acquired the San Francisco-based biotech’s Bruton’s tyrosine kinase inhibitor program). Elsewhere, Leiden University startup iProtics recently received a €200K grant from the Dutch Biotech Booster to develop selective immunoproteosome inhibitors, while Auburn University spinout Inhiprot (West Lebanon, NH) received SBIR funding to develop a dual PSMB6/PSMB9 inhibitor for MM. Now, a new study reveals immunoproteosome targeting may also have benefits in neuroinflammatory diseases like multiple sclerosis.

The work, published in Cell and led by Catherine Meyer-Schwesinger and Manuel Friese, from University Medical Center Hamburg-Eppendorf, identifies a neuron-intrinsic mechanism of neurodegeneration in multiple sclerosis (MS) driven by the immunoproteasome.

Under healthy conditions, neurons utilize the constitutive proteasome subunit PSMB5 to regulate proteostasis and degrade 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3), a potent stimulator of glycolysis. This degradation is key because neurons rely more on the pentose phosphate pathway than on glycolysis to produce antioxidants like NADPH and glutathione for protection against oxidative stress.

However, Meyer-Schwesinger, Friese and their colleagues show that, during neuroinflammation, chronic exposure to interferon-γ leads to the induction of the immunoproteasome in neurons, triggering the replacement of constitutive proteosome PSMB5 (β5c) with PSMB8 (β5i). This subunit swap in neurons reduces proteasomal activity, resulting in accumulation of PFKFB3, which in turn enhances glycolysis, diminishes the activity of the pentose phosphate pathway, and impairs redox homeostasis — conditions that sensitize neurons to oxidative injury and ferroptosis.

The team showed that this mechanism was operational in both experimental autoimmune encephalomyelitis (EAE; a mouse model of MS) and brain tissue from MS patients. Moreover, neuron-specific knock-out of Psmb8 or pharmacological inhibition using the small-molecule PSMB8 inhibitor ONX-0914 (originally developed at Onyx Pharmaceuticals/Proteolix) protected neurons in vivo from inflammation-induced damage. Similarly, blocking PFKFB3 with the small-molecule inhibitor PFK-158 or through conditional knockout in neurons reduced disease severity in EAE, prevented neuronal and synaptic loss, and reduced markers of oxidative stress and lipid peroxidation.

It is important to highlight that, unlike cancer or immune cells, neurons do not upregulate PSMB8 in response to a series of MS-related cytokines. So, the neuron-specific effect reported in this study might only become active upon chronic neuroinflammation (i.e. chronic exposure to interferon-γ). Understanding this mechanism might reveal new targets related to the immunoproteosome in the treatment of MS.

This brings us to challenges for translational efforts seeking to develop immunoproteosome inhibitors against MS. Several important neuronal processes, such as synaptic transmission and calcium signaling, are tightly linked to proteasome function; thus, pan-proteosome inhibitors like Velcade could be detrimental to the CNS. The saving grace of approved proteosome inhibitors is that current chemotypes (boronate-based peptides or epoxyketone-based binders) do not cross the blood brain barrier, at least in healthy individuals. Thus, any MS program might need to use intrathecal injection for compounds derived from existing chemical series or engage a medicinal-chemistry effort to design molecules that can breach the BBB and retain potency.

The gambit for immunoproteosome-selective drugs is that they avoid inhibiting constitutive 26S proteosome activity in most tissues (and non-inflammed CNS), which is what makes Velcade and its derivatives so difficult for patients to tolerate; an immunoproteosome inhibitor should therefore have a more favorable safety profile. But so far, immunoproteosome-targeting drugs have had their own share of toxicity problems in the clinic.

Last October, Kezar abandoned its program for zetomipzomib in lupus nephritis after the FDA placed a clinical hold on the trial after 4 patient deaths. The agency placed a second partial hold on the company’s autoimmune hepatitis trial in 24 patients last November due to concerns about steroid control and injection site reactions in 4 patients who were waiting to roll over into the open-label extension arm. Concerns about compromised immune surveillance of acute or latent viral infections due to hobbled antigen processing and presentation would also need to be explored.

In sum, the new work provides strong evidence that the immunoproteosome plays a key role not only in inflammation or infiltration of immune cells, but also in a metabolic switch in neurons which is a key driver of vulnerability in MS. It will be interesting to see whether either targeting immunoproteosome component PSMB8 or taking a completely different tack, blocking PFKFB3, will prove more practical as a neuroprotective strategy in MS.

The Needle Issue #8

24 Jun
Juan-Carlos-Lopez
Juan Carlos Lopez
Andy-Marshall
Andy Marshall

Around 1 in 5000 people live with a maternally inherited mitochondrial disease like MELASLeber’s Hereditary Optical Neuropathy (LHON) or MIDD, for which there are limited or no treatment options. Gene- and base-editing therapies for mitochondrial DNA (mtDNA) have lagged behind CRISPR–Cas9-based approaches targeting nuclear genes. Whereas there is already a CRISPR–Cas9-based product on the market and >150 different active trials of investigational therapies, the company closest to the clinic with an I-CreI (mitoARCUS) meganuclease targeting a mtDNA point mutation in MELAS/mitochondrial myopathy (Precision Biosciences) announced last month that it was pausing development for commercial reasons.

Despite this disparity, there is reason for optimism as a flurry of different types of optimized cytidine and adenine base editors for mtDNA are now available, with base conversion efficiencies of 50% now achievable, and some newer formats reaching efficiencies as high as 82%.

The development of mtDNA editors is not without challenges. First, editors must dispense with the targeting guide RNA, as mitochondria possess a double membrane that lacks any RNA transport system, effectively thwarting CRISPR-based gene or base editors (instead, a mitochondrial targeting sequence is used to ferry-in editor proteins). Second, unlike nuclear DNA with two copies of a gene, every human cell contains thousands of mitochondria — oocytes contain a whopping 193,000 mitochondria on average — and each organelle contains an average 10 mitochondrial genomes. Those ~10,000 genomes per cell may not all have the same sequence, with mutations existing in a state known as heteroplasmy, in which both mutant and wild-type genomes co-exist in the same organelle. Disease only occurs when the percentage of mutant mtDNA exceeds a particular threshold, typically between 70% and 95%.

Heteroplasmic mitochondrial diseases, like MELAS and MIDD, could be treated using I-Crel/FokI meganucleases or restriction enzymes linked to either transcription activator-like effector (TALE) domains or zinc fingers (which introduce double-strand DNA breaks into target sequences, leading to elimination of mutant mtDNA and repopulation of wild-type mtDNA); other conditions like LHON are predominantly mutant homoplasmic, which means they can only be treated using base editors or supplemental gene therapy.

One key concern with base-editing technology has been its propensity for off-target and bystander changes. This has led to various strategies to increase specificity, such as engineering the deaminases to narrow the editing window or use of nuclear exclusion sequences to stop nuclear sequence editing. Now, two papers in Nature Biotechnology represent important advances that could speed up translational studies of mitochondrial diseases.

Liang Chen, Dali Li and their colleagues of ShanghaiTech University, China report the engineering of highly efficient mitochondrial adenine base editors (eTd-mtABEs) by introducing mutations into the TALE TadA-8e deaminase for greater activity and specificity. These editors achieved up to 87% editing efficiency in human cells and over 50% in vivo, with reduced off-target effects compared to earlier tools.

In the first study, the researchers used eTd-mtABEs to introduce mutations in the human ND6 gene, encoding a subunit of the oxidative phosphorylation (OXPHOS) system linked to LHON and Leigh syndrome. They found reduced levels of ATP and more reactive oxygen species in the edited cells compared with controls, consistent with disease phenotypes. Next, the team used this adenine TALE base editor to introduce two pathogenic T-to-C mutations in the mitochondrial TRNS1 gene of rat zygotes, a gene linked to childhood-onset sensorineural hearing loss. The resulting offspring showed sensorineural hearing loss, which was transmitted to the F1 generation, providing proof of concept that eTd-mtABEs can be used to create animal models of disease.

In the companion paper, Chen, Li and their colleagues used the adenine TALE base editor to model Leigh disease in rats using a similar strategy. The resulting rats showed reduced motor coordination and muscle strength, defects that were obtained with editing efficiencies of only 54% on average. To test if the abnormalities could be reversed, the authors then used a cytosine TALE base editor in zygotes from the mutant rats. On average, the editing efficiency was only 53%, but this was enough to rescue the disease phenotypes.

This is the first report of direct correction of mtDNA mutations via a TALE base editor in an animal model. The next step will be to show feasibility in a model after disease onset (only the UK and Australia allow maternal spindle transfer therapy for mitochondrial diseases; no country has permitted mitochondrial base editing in human zygotes).

Achieving effective therapeutic mitochondrial base editing in affected target tissues will thus require efficient AAV delivery. For LHON, an already approved FDA AAV-2 product transduces the optic nerve and retinal ganglion cells, providing a translational path; GenSight Biologics also recently published 5-year outcome data for its AAV-2 therapy Lumevoq (lenadogene nolparvec) in LHON. But AAV delivery in other mitochondrial conditions will not be as simple: MELAS patients, for example, require efficient transduction of the CNS, kidney, skeletal muscle and cardiac muscle; MIDD patients need AAV delivery to the pancreas, inner ear, retina and kidney. Although a commercial AAV vector (AAVrh74) is available for muscle (Sarepta’s Elvidys), vectors that reach many of these other tissues have yet to be commercialized and may require next-generation AAV capsids and/or refinement of machine-guided design of cell type-specific synthetic promoters to reach target organs.

It is encouraging that the roughly 50% base conversion rate achieved in these new studies exceeded the heteroplasmy threshold required for disease manifestation and therapeutic rescue. At the same time, despite this remarkable success, concerns remain about off-target effects — both in mitochondrial and nuclear genomes — and narrow therapeutic windows. And with base editing approaches so far behind conventional gene therapies like Lumevoq in development, compelling commercial and clinical advantages benchmarked against best-in-class gene therapy will be needed to convince investors to back these approaches.

One parting thought: the past year has seen a noticeable uptick in publications on mitochondrial base editing technology from labs outside of the US. TALEN specialist Cellectis, headquartered in Paris, France, acquired 19% of equity in the mitochondrial base editing company Primera Therapeutics in 2022, ostensibly for its rapid TALE assembly platform (FusX System), which streamlines TALE repeat construction. In South Korea, Jin-Soo Kim at the Korea Advanced Institute of Science and Technology (KAIST) recently co-founded startup Edgene with Myriad Partners to develop mitochondrial base editors based on his seminal work on TALE-linked deaminases (TALEDs) enabling A to G conversion, which he has continued to optimize. According to Biocentury8 out of 13 base editing studies published in 27 translational journals over the past year came from labs in China. Wensheng Wei’s group at Peking University, a founder of Edigene in Beijing, continues to work on mitobase editors, with two recent patents on strand-selective mitochondrial editing. And Jia Chen of ShanghaiTech University, China, and his collaborators Li Yang and Bei Yang, are scientific advisors to Correctseq in Shanghai, which is developing transformer base editors for ex vivo and in vivo applications. It seems that mitochondrial base editing may be another area where US biotech may soon be finding itself chasing the dragon. David Liu and Beam Therapeutics may have something to say about that.