Tag Archives: books

The Needle Issue #19

25 Nov
Juan-Carlos-Lopez
Juan Carlos Lopez
Andy-Marshall
Andy Marshall

Although therapeutic antibodies represent a $160 billion-dollar annual market and comprise a third of all approved drugs, discovering new antibody molecules remains a labor-intensive process, requiring slow experimental approaches with low hit rates, such as animal immunizations and or the panning of phage- or yeast-displayed antibody libraries. The drug hunter’s dream would be to design an antibody to any target by simply entering information about that epitope into a computer. Now that dream is one step closer with a recent proof of principle peer-reviewed paper published in Nature on work disclosed last year from the team of 2024 Nobel Laureate David Baker. Baker and his colleagues at the University of Washington introduce the first generalizable machine-learning method for designing epitope-specific antibodies from scratch without relying on immunization, natural antibody repertoires, or knowledge of pre-existing binders.

Unlike small-molecule drug development, which has benefitted from an explosion of interest in the use of machine-learning models, in-silico design of antibody binders has lagged far behind. One reason for this is the paucity of high-resolution structures of human antibody–antigen pairs—currently only ~10,000 structures for 2,500 antibody-antigen pairs have been lodged in SAbDab (a subset of the RCSB Protein Data Bank). Most of these structures are soluble protein antigens, but there’s little data to model antibody binders to GPCRs, ion channels, multipass membrane proteins and glycan-rich targets, which are of most commercial interest. Overall, the antibody–antigen structural corpus is orders of magnitude smaller, noisier and narrower than that available for small molecules, lacking information on binding affinities and epitope competition maps via PDBBind/BindingDB/ChEMBL.

For these reasons, most companies have focused on machine learning prediction of developability properties—low aggregation, high thermostability, low non-specific binding, high solubility, low chemical liability/deamidation and low viscosity—for an antibody’s scaffold, rather than in-silico design of the six complementarity determining-regions (CDRs) on the end of an antibody’s two binding arms.

Even so, several recently founded startups have claimed to be using machine-learning models to predict/design antibody binders from scratch. These include Xaira TherapeuticsNabla BioChai Discovery and Aulos Bioscience.

Xaira debuted last year with >$1 billion in funding to advance models originating from the Baker lab. Nabla Bio also raised a $26 million series A in 2024, publishing preprints in 2024 and 2025 that describe its generative model (‘JAM’) for designing VHH antibodies with sub-nanomolar affinities against the G-protein coupled receptor (GPCR) chemokine CXC-motif receptor 7 (CXCR7), including several agonists. In August, Chai announced a $70 million series A financing based on its ‘Chai-2’ generative model disclosed in a preprint that details de novo antibodies/nanobodies against 52 protein targets, including platelet derived growth factor receptor (PDGFR), IL-7Rα, PD-L1, insulin receptor and tumor necrosis factor alpha, with “a 16% binding rate” and “at least one successful binder for 50% of targets”.

Finally, Aulos emerged with a $40 million series A in 2021 as a spinout from Biolojic Design. This program has generated computationally designed de novo CDR binders with picomolar affinities for epitopes on HER2, VEGF-A, and IL-2. The IL-2 antibody (imneskibart; AU-007)—designed to selectively bind the CD25-binding portion of IL-2, while still allowing IL-2 to bind the dimeric receptor on effector T cells and natural killer cells—reported positive phase 2 results in two types of cancer just last week. Absci, another more established company, has also been developing de novo antibodies, publishing a generative model for de novo antibody design of CDR3 loops against HER2, VEGF-A and SARS-CoV-2 S protein receptor binding domain.

Overall, though, computational efforts have largely optimized existing antibodies or proposed variants once a binder already exists. Recent generative approaches have often needed a starting binder, leaving de novo, epitope-specific antibody creation as an unmet goal. The Baker paper now provides a generalizable, open-source machine-learning approach that can find low nanomolar antibody binders to a wide range of targets.

To accomplish this task, the authors use RFdiffusion, a generative deep-learning framework for protein design, extending its capabilities by fine-tuning it specifically on antibody–antigen structures. Their goal was to enable the in-silico creation of heavy-chain variable domains (VHHs), single-chain variable fragments (scFvs), and full antibodies that target user-defined epitopes with atomic-level structural accuracy.

Their approach integrates three major components: backbone generation with a modified RFdiffusion model, CDR sequence design via the algorithm ProteinMPNN, and structural filtering using a fine-tuned RoseTTAFold2 predictor (the authors note that improved predictions can now be obtained by swapping out RoseTTAFold2 for AlphaFold3 developed last year by Google Deepmind and Isomorphic Labs). The refined RFdiffusion model can design new CDRs while preserving a fixed antibody framework and sampling diverse docking orientations around a target epitope. The resulting models generalize beyond training data, producing CDRs unlike any found in natural antibodies.

Baker and his colleagues created VHHs against several therapeutically relevant targets, including influenza H1 haemagglutinin, Clostridium difficile toxin B (TcdB), SARS-CoV-2 receptor-binding domain, and other viral or immune epitopes. High-throughput screening via yeast display or purified expression led to the identification of multiple binders, typically with initial low affinities in the tens to hundreds of nanomolar range. Cryo-EM confirmed near-perfect structural agreement between design models and experimental complexes, particularly for influenza haemagglutinin and TcdB, demonstrating atomic-level accuracy across the binding region and the designed CDR loops. To enhance affinity, the authors used OrthoRep, an in-vivo continuous evolution system, for the affinity maturation of selected VHHs. The affinity of the resulting VHHs improved by roughly two orders of magnitude while retaining the original binding orientation.

Baker and his team further challenged their method with the more difficult problem of de-novo scFv design, which requires simultaneous construction of six CDR loops across two amino acid chains. The team introduced a combinatorial assembly strategy in which heavy and light chains from structurally similar designs were mixed to overcome cases where a single imperfect CDR would compromise binding. This enabled the discovery of scFvs targeting the Frizzled epitope of TcdB and a PHOX2B peptide–MHC complex. Cryo-EM validation of two scFvs showed that all six CDR loops matched the design model with near-atomic precision.

Future work is needed to extend de novo antibody prediction via this method to tougher target classes, such as membrane proteins. Clearly, modeling across all six CDR loops and the heavy and light chains remains a hard problem; indeed, the paper’s marquee result was designing a single scFv where all six CDRs matched the designed pose at high resolution; more generally, scaling reliable heavy- and light-chain co-design beyond a few cases remains an open engineering challenge that future methods will need to solve. For the field to gather momentum, benchmarking efforts like the AIntibody challenge will be needed, together with public efforts to create datasets of negative binding data, akin to those described in a paper published earlier this year.

Overall, the Baker paper is seminal work that establishes a practical and accurate approach to designing epitope-specific antibodies from scratch. It represents a major advance in the development of therapeutic antibody discovery.

RESI London Innovator’s Pitch Challenge Finalists 

18 Nov

By Claire Jeong, Chief Conference Officer, Vice President of Investor Research, Asia BD, LSN

The Innovator’s Pitch Challenge showcases early-stage companies developing breakthrough technologies across key sectors of life sciences.

The Innovator’s Pitch Challenge (IPC) returns to RESI London with a full lineup of pioneering startups presenting across multiple themed sessions. Each finalist will pitch to panels of relevant investors and industry leaders, gaining practical feedback and creating valuable connections with partners actively seeking new technologies. The IPC provides fundraising companies with a platform to elevate their visibility and engage with a global network of investors and strategics.

If you are attending RESI London, make time to see these pitches and meet the founders throughout the day. Delegates participating in partnering can also schedule one-on-one meetings with the finalists. Full event and registration details are available at resiconference.com/resi-london.

Meet the RESI London Innovator’s Pitch Challenge Finalists

Session 1 | 9:00 – 10:00 AM | Therapeutics

Session 2 | 10:00 – 11:00 AM | Diagnostics Tools & Platforms

Session 3 | 11:00 AM – 12:00 PM | Therapeutics

Session 4 | 1:00 – 2:00 PM | Therapeutics & Medical Devices

Session 5 | 2:00 – 3:00 PM | Therapeutics

Session 6 | 3:00 – 4:00 PM | Medical Devices

Session 7 | 4:00 – 5:00 PM | R&D and Enabling Technologies

Register for RESI London

Navigating JPM Week: A Guide to RESI’s 2026 Event Lineup 

18 Nov

By Max Braht, Director of Business Development, LSN

Max-Braht-Headshot

As the life science world converges on San Francisco for J.P. Morgan Healthcare Week in January 2026, the RESI Conference plays a central role, and its website’s dedicated “JPM Week Events” page is an essential resource for attendees and stakeholders alike. Here’s a breakdown of what the site offers and why it’s such a valuable hub. 

What Is the JPM Week Events Page? 

The RESI “JPM Week Events” page is essentially a curated calendar and guide, maintained by Life Science Nation. It compiles an exhaustive list of life science–oriented events happening in parallel with JPM Healthcare Week, from early morning breakfasts to high-level receptions and symposiums.  

It’s not just a list; it’s a strategic tool for entrepreneurs, investors, and corporates to plan how to maximize their time during one of the most frenetic weeks in biotech and healthcare investments. 

What’s on the Agenda: Highlights from the 2026 Schedule 

Here is some standout events listed for January 2026 on RESI’s page: 

January 10–11: 

  • San Francisco CEO | Longwood Healthcare Leaders Forum — A full-day leadership forum at the Four Seasons.  
  • 9th Annual Neuroscience Innovation Forum — Focused on business development, licensing, and investment, held at the Marines’ Memorial Club.  
  • PwC Executive Women’s Event — A networking event aimed at women leaders in healthcare.  
  • Yafo Capital ACCESS ASIA BD Forum — A cross-border business development forum in San Francisco.  

January 12: 

  • RESI JPM 2026 Conference at the San Francisco Marriott Marquis.  
  • AcuityMD Sunrise Partnering Breakfast — An early morning session for high-value partnering.  
  • AdvaMed Member Meeting Space & Receptions — Dedicated space for AdvaMed members.  
  • Incubate & DLA Piper: Innovation at a Crossroads — A policy-focused discussion on biopharma strategy in a changing global landscape.  
  • Lifeblood & Goodwin MedTech CEO-only Forum — A specialized gathering for medtech CEOs.  
  • MassBio Meeting Space & Receptions — Hosted by MassBio at the Parc 55 Hotel.  
  • QNova LifeSciences 12th Annual Partnering Forum — A major partnering event in the Hilton Union Square.  
  • PMI Biotech Reception — A dinner reception at InterContinental Mark Hopkins.  
  • Aquillius Pitch Showcase — A pitching event for life sciences companies. 
  • Biovia Event: Clusters of Excellence — A forum on European life science clusters and global success.  
  • T2Bmeet @ JPM — A streamlined meeting event to facilitate business development and partnering.  
  • Scale Biosciences JPM Happy Hour — Evening social for dealmakers.  
  • STAT @ JPM26 Live — A live event by STAT News.  
  • Reed Smith Reception — At the Museum of the African Diaspora. 
  • Deloitte Reception — A networking evening hosted by Deloitte.  

January 13: 

  • Continuation of RESI JPM 2026 
  • Fierce JPM Week — A track that runs throughout JPM Week, focused on dealmaking and thought leadership. 
  • Biocom California Events — Receptions, meeting space, and more at Omni San Francisco. 
  • KoreaBIO / BioCentury / Sidley Austin IR Forum — Global investor relations forum.  
  • LaunchBio & Inspira Innovators Social Hour — A more informal social event for early-stage founders.  
  • Katten’s Diptyque Client Reception — A luxury experience for select invitees. 
  • Dartmouth Offsite — Hosted at the Beacon Grand Hotel.  
  • Bits in Bio Reception — For emerging biotech companies and leaders.  

January 14–15: 

  • Multiple networking breakfasts, partnering forums, and receptions.  
  • HCPEA Women’s Mentor/Mentee Networking Breakfast on January 14. 
  • 2026 Stanford Alumni in Healthcare Networking Mixer — A Stanford alumni focused event. 
  • CTIP Innovator Showcase (Jan 15) — For pediatric technology innovators. 
  • MBC BioLabs: Meet the Founders — Founders’ networking at a biotech incubator.  
  • Toplink Conference @ JPM — A full-day conference on tech + life science.  
  • Swissnex Networking Event — International networking through the Swissnex channel.  
  • And more receptions, including PCI Pharma Services, California Israel Chamber of Commerce Israel Lounge, and Destination Medical Center Discovery Exchange.  

Why This Page Matters 

  1. Comprehensive Planning Tool: For anyone attending JPM Week — whether founders, investors, BD execs, or scientists — having a central, curated list of relevant life science events is invaluable. Rather than navigating a sea of scattered invitations, the RESI page brings together a clean, structured schedule. 
  1. Partnership Optimization: Many of the events listed are tailored for dealmaking — breakfasts, partnering forums, and pitch showcases. This makes it easier for startups to schedule and maximize high-impact interactions. 
  1. Community Spotlight: The page isn’t only about formal conferences; it also highlights social events, networking mixers, and sector-specific receptions (e.g., women in healthcare, neuroscience, medtech). This helps attendees connect on both professional and personal levels. 

The RESI “JPM Week Events” page is more than just a listing: it’s a strategic roadmap for navigating one of the busiest and most important weeks in healthcare investing. By consolidating diverse events, boardroom policy talks to rooftop cocktail receptions; it empowers life science professionals to plan smarter, connect deeper, and maximize their time. 

For anyone participating in RESI JPM 2026, bookmarking this page is one of the first steps to making the most of the week. 

Register for RESI JPM >>

From Lab to Market: Why Life Science Companies Are Drawn to Singapore 

12 Nov

By Claire Jeong, Chief Conference Officer, Vice President of Investor Research, Asia BD, LSN

LSN is proud to announce our partnership with Enterprise SG for RESI JPM 2026, to foster meaningful conversations on global life science innovation, investment and cross-border collaboration. Learn how Singapore is a dynamic launchpad for innovation and home to cutting-edge startups ready to collaborate on your next breakthrough. Join us at our upcoming panel on January 12 to find out more! 

As global healthcare challenges intensify, innovative biomedical technologies from Asia are stepping up to drive change, translating life science research into real-world solutions. Increasingly, investors, corporates, startups, and healthcare systems around the world are seeing the urgency in bridging the East and West to improve healthcare outcomes and deliver value-based care.

Singapore, located at the heart of Asia, is a dynamic hub for biomedical innovation, driven by a strong network of global investors, researchers, mentors, and innovators. With decades of sustained government investments and a robust talent pipeline from world-class universities and research institutes, it is home to over 500 biomedical and medtech companies. The ecosystem has attracted venture capitalists and venture builders like MPM BioImpact, Polaris Partners, and Flagship Pioneering, as well as global pharma leaders such as Pfizer, Roche, and Johnson & Johnson. These players work closely with government agencies, like Enterprise Singapore, that drive startup development, provide patient funding, expertise, infrastructure, and networks crucial for producing globally competitive solutions.

Singapore’s strategic position as a bridge between Asian and global markets enables it to play an outsized role in driving biomedical advancements. This works both ways, as a gateway for global companies to access the growing opportunities in Asia, and as a springboard for regional companies to expand worldwide. For example, through partnerships with healthcare organisations like Cedars-Sinai and Mayo Clinic in the US, Enterprise Singapore supports Singapore startups to test and scale their solutions in overseas markets, facilitating a bi-directional flow of innovation to improve healthcare for communities.

Join Enterprise Singapore at the ‘Asia Cross Border Investments Panel’ to explore how cross-border capital, talent, and technologies are converging to drive breakthroughs in precision medicine, innovative therapies, and next-generation diagnostics. The panel will take place on January 12, 2026, from 11:00 am to 12:00 pm at RESI JPM by LSN, held at the Marriott Marquis, San Francisco. Learn from prominent industry leaders how transcontinental partnerships, including those with Singapore, are shaping the future of healthcare innovation – from discovery to global commercialisation.

To join the conversation, please contact Claire Jeong, VP of Investor Research, Asia BD, at c.jeong@lifesciencenation.com.

Make Your Mark at RESI JPM with the New Company Presentation Track 

12 Nov

By Max Braht, Director of Business Development, LSN

Max-Braht-Headshot

Showcase your brand, services, and expertise to a global life science audience 

Life Science Nation (LSN) is introducing a new opportunity at RESI JPM 2026, the Company Presentation Track, designed for service providers, established companies, and later-stage ventures seeking to elevate their brand visibility and connect with decision-makers across the global life science ecosystem. 

Taking place January 12-13, 2026, at the Marriott Marquis in San Francisco, RESI JPM will also feature three days of virtual partnering on January 14, 19–20. RESI JPM will bring together hundreds of early-stage life science and healthcare companies and over 500 global investors for two full days of partnering, investor panels, and networking. 

The new Company Presentation Track offers organizations a unique platform to deliver a 15-minute presentation highlighting their business, market positioning, and value proposition. Unlike the Innovator’s Pitch Challenge, which focuses on fundraising and investor feedback for early-stage startups, these company presentations are designed for firms looking to expand their visibility, attract new clients, and strengthen their strategic partnerships. 

Participants in this track will have the opportunity to: 

  • Present their company, products, and services to an engaged global audience. 
  • Build brand recognition among investors, partners, and industry peers. 
  • Demonstrate thought leadership and industry expertise in a highly visible format. 

This new feature adds to RESI’s robust mix of investor panels, workshops, partnering meetings, and exhibition opportunities, making it a comprehensive platform for business development and partnership-building across the life science sector. 

Make your mark at RESI JPM. Share your story, elevate your brand, and connect with investors, innovators, and service providers driving the future of healthcare innovation. 

To apply, select Company Presentation during your RESI JPM registration or contact the RESI team at RESI@lifesciencenation.com for more information. 

Register for RESI JPM >>

The Needle Issue #18

12 Nov
Juan-Carlos-Lopez
Juan Carlos Lopez
Andy-Marshall
Andy Marshall

This year’s Nobel Prize for Physiology or Medicine was awarded to Mary Brunkow, Fred Ramsdell and Shimon Sakaguchi for the discovery of regulatory T cells (Tregs)— white blood cells whose role it is to suppress overactivation of our immune system. The prize was unusual in that Brunkow made her discoveries while leading an industry R&D team at Darwin Molecular (now defunct). Ramsdell and Sakaguchi are also co-founders of two prominent biotech companies developing Treg therapies: Ramsdell’s Sonoma Biotherapeutics is developing autologous Treg therapies against arthritis and hidradenitis suppurativa, together with a LFA3-IgG1 fusion molecule for depleting CD2+ effector T cells; and Sakaguchi’s Coya Therapeutics is developing a low-dose interleukin 2 (IL-2)/CTLA-IgG1 fusion combination for amyotrophic lateral sclerosis and other neurodegenerative disorders; the Nobel prize likely helped boost Coya’s announcement in October to raise $20 million in follow-on funding on the public markets.

Tregs have long attracted the attention of drug developers interested in autoimmune conditions, diseases where the immune system is overactive. But progress in this field has been slow, and the first clinical results for T-reg cell therapies are only now beginning to emerge in liver transplantation and kidney transplantation. (Low-dose IL-2 treatments that promote Tregs have also begun to show promise in lupus and systemic sclerosis patients.)

The overarching idea behind Treg cell therapy has been to isolate these cells from a patient, introduce/upregulate expression of the FOXP3 transcription factor that marks them from other T cells, and expand them before giving them back to the patient.

Early attempts to develop this autologous therapy failed in part because Tregs are less numerous in the peripheral blood than effector CD4/CD8 T cells, difficult to isolate and problematic to expand. Moreover, the isolated Tregs are polyclonal, targeting multiple antigens. Approaches that expanded this unmodified polyclonal population of cells and put them back into patients resulted in a ‘diluted’, clinically insignificant, therapeutic effect.

To address this problem, companies are now turning to leverage advances in the chimeric antigen receptor (CAR)-T cell therapy field. A whole slew of Treg cell therapies is being engineered with CARs or T-cell receptors (TCRs), allowing targeting to specific antigens in specific organs.

As we mentioned above, the most advanced of these are in the organ-transplantation field, where chronic immunosuppression renders patients susceptible to infections that can be lethal. Sangamo Therapeutics’ TX200 and Quell Therapeutics’ QEL-001 are CAR-Treg therapies for renal- and liver-transplant rejection, respectively. These assets, which are in phase 1/2, both bind to human leukocyte antigen HLA-A2, which is exclusively expressed on the transplanted donor organ, ensuring that the Tregs travel exclusively to the place where they are needed. Elsewhere, Sonoma is also developing an autologous CAR-Treg therapy, SBT-77-7101, that targets citrullinated proteins abundant in rheumatoid arthritis (for which Sonoma recently announced positive interim phase 1 data) and the skin condition hidradenitis suppurativa.

A second focus for companies has been on TCR-engineered Tregs. The great theoretical advantages of TCRs over CARs are that 1) they have high sensitivity at low antigen density, 2) they focus exclusively on antigen-presenting cells which then reeducate/suppress effector T cells; 3) they don’t bind soluble antigen and 4) most autoimmune diseases are driven by intracellular proteins presented as processed peptides in the context of HLA. As yet, however, only a few companies are pursuing the approach. One example is GentiBio, which is developing GNTI-122 for type 1 diabetes. This Treg product expresses a TCR targeting a fragment (IGRP 305–324) of the pancreatic islet-specific antigen glucose-6-phosphatase catalytic subunit-related protein (IGRP). Another pioneer in this area, Abata Therapeutics, had also been developing a TCR-engineered Treg therapy (targeting myelin peptide/HLA-DRB1*15:01 for multiple sclerosis); however, the frosty financing environment in the first half of 2025 meant it ran out of cash and Abata closed its doors in August.

One challenge that all Treg cell therapies face is the plasticity of these cells and their tendency to shape shift into effector T cells, a phenotypic change that, in the therapeutic setting, could lower efficacy or even exacerbate pathology. One approach to address this problem has been to modify the cells by overexpressing the transcription factor FOXP3, the master regulator of Treg development. For example, as methylation of the FOXP3 promoter under inflammatory conditions can turn Tregs Into effector T cells, Quell’s Tregs are engineered with a methylation-resistant FOXP3 that compels the cells to remain in their suppressor phenotype. And to bring us back to where we started, Nobel laureate Sakaguchi turns out to be a serial entrepreneur, founding another company, Regcell, that recently relocated from Japan to the US on the back of a $45.8 million financing back in March. The company is using small-molecule CDK8/19 inhibitors that act as epigenetic modulators to lock in FOXP3+ Tregs that show a stable suppressive phenotype in vivo.

But Treg cell therapies still face stiff competition. Ironically, perhaps, from their antithesis: the effector CAR-T cell. Pioneering work by Georg Schett’s group at Friedrich Alexander University Erlangen-Nuremberg has galvanized numerous efforts to develop CAR-T depleters of pathogenic B-cell or plasma-cell subsets in autoimmune conditions. Evidence is growing for the clinical efficacy of this approach in diseases such as lupus or myasthenia gravis.

But the holy grail would be to dispense with cell therapy altogether and promote Treg activity in situ, without the need for purification and modification/expansion outside the body. By focusing on injectable biologics, many companies can bring products to market that are easily accommodated into current clinical practice, dispensing with the need for leukopheresis (an approach alien to most rheumatologists) and the complex logistics of ex vivo cell therapy.

Nektar Therapeutics’ rezpegaldesleukin is a pegylated IL-2 given at low doses that acts on CD25, the high-affinity IL-2 receptor enriched in Tregs. The company recently reported positive phase 2 data in atopic dermatitis. Elsewhere, Egle Therapeutics and Mozart Therapeutics have discovery programs developing bispecific antibody Treg engagers for multiple autoimmune diseases. TrexBio has developed a peptide agonist of tumor necrosis factor receptor 2 (TNFR2), announcing in June the dosing of its first participant in a phase 1 trial for atopic dermatitis and other inflammatory diseases. Zag Bio is another T-cell engager play that recently came out of stealth,

The Treg field can rightly celebrate its Nobel recognition and the progress made towards bringing this cell type to patients. Although it will likely be several years before we gain a full picture of how Treg biology can be leveraged to fight autoimmune disease, the field eagerly awaits the readout from early efficacy trials of cell therapies and potentially an FDA-approved product for the biologics in later development.

Kobe Biomedical Innovation Cluster (KBIC) Joins RESI JPM 2026 as Gold Sponsor

28 Oct

By Claire Jeong, Chief Conference Officer, Vice President of Investor Research, Asia BD, LSN

Life Science Nation is proud to announce that the Kobe Biomedical Innovation Cluster (KBIC) will serve as a sponsor for RESI JPM 2026, continuing its mission to promote innovation, entrepreneurship, and global collaboration in life sciences. 

As part of this sponsorship, KBIC will host the Kansai Life Sciences Accelerator Program (KLSAP) 2025 Demo Day at RESI JPM 2026 on Tuesday, January 13, 12:00 – 2:00pm PT at the Marriott Marquis San Francisco. The Demo Day will feature 3 startups that are part of the KLSAP 2025 Cohort as well as other member companies of KBIC, to be announced as the event approaches. This initiative will provide participating companies with global exposure, strategic investor connections, and the opportunity to pitch to an international audience of early-stage investors and strategic partners across life science and healthcare sectors.

Interested in joining and receiving updates on the KLSAP 2025 Demo Day? Please contact Claire Jeong, VP of Investor Research, Asia BD, at c.jeong@lifesciencenation.com 

Introduction of Kobe Biomedical Innovation Cluster (KBIC)
Located in the heart of Kobe, Japan, the Kobe Biomedical Innovation Cluster is one of the nation’s leading ecosystems dedicated to the advancement of biomedical research and commercialization. With more than 340 organizations, including research institutes, hospitals, and life science companies, KBIC plays a vital role in bridging academia, government, and industry to accelerate innovation and improve global health outcomes. 

By partnering with RESI JPM 2026, KBIC aims to strengthen international collaboration and support Japanese startups seeking to expand their networks and raise global awareness for their technologies. Through this continued engagement, KBIC and LSN will work together help founders access global capital and strategic resources to advance from concept to commercialization. 

About Kansai Life Sciences Accelerator Program (KLSAP)
Powered by KBIC, the Kansai Life Sciences Accelerator Program (KLSAP) supports early-stage life science and healthcare startups in the Kansai region through tailored mentorship, commercialization guidance, and access to global investor networks. 

The 2025 KLSAP Cohort will participate in RESI JPM 2026 to present their innovations to a diverse investor audience, gain valuable feedback, and establish partnerships that can help drive their technologies toward global markets. The cohort’s participation exemplifies KBIC’s commitment to supporting international expansion and facilitating cross-border collaboration in life sciences. 3 companies have been selected for this year’s KLSAP Cohort, with descriptions of each company added below:

C-Biomex
Founded in 2017, C-Biomex is a bio-venture dedicated to advancing novel theranostics using its proprietary peptide discovery platform, CUS™. The platform enables identification of peptides with high stability and specificity through a three-step process involving a high-purity library, an innovative screening protocol that minimizes background interactions, and direct sequencing via a proprietary algorithm. C-Biomex focuses on radiopharmaceutical development, positioning itself at the intersection of diagnostics and therapeutics to accelerate peptide-based solutions for global biomedical applications.

GeneMedicine
GeneMedicine, founded in 2014 and based in Seoul, develops oncolytic viruses engineered to selectively replicate in and kill cancer cells while stimulating an anti-tumor immune response. Its GM-oAd platform is designed for systemic delivery of oncolytic adenoviruses with enhanced tumor specificity, immune activation, and ability to overcome physical tumor barriers. In addition to its therapeutic pipeline, GeneMedicine is expanding into CDMO services and novel drug-delivery systems, building a sustainable and diversified business model.

iXgene
iXgene is a Japanese life sciences company focused on developing therapies for intractable diseases using genome editing and induced pluripotent stem (iPS) cell technology. Its proprietary platform combines advanced genome editing tools, such as CRISPR, with iPS-derived therapeutics targeting indications including malignant brain tumors and brain injury. iXgene collaborates with academic institutions and pharmaceutical partners to translate next-generation regenerative and gene therapies into the clinic, aiming to address high-unmet-need central nervous system diseases. 

LSN and KBIC invites all investors, industry leaders, and innovators to meet the KLSAP 2025 Cohort at RESI JPM 2026. Together, they will continue to advance global innovation and foster meaningful connections across the life sciences ecosystem. 

Register for RESI JPM