Tag Archives: food

The Needle Issue #18

12 Nov
Juan-Carlos-Lopez
Juan Carlos Lopez
Andy-Marshall
Andy Marshall

This year’s Nobel Prize for Physiology or Medicine was awarded to Mary Brunkow, Fred Ramsdell and Shimon Sakaguchi for the discovery of regulatory T cells (Tregs)— white blood cells whose role it is to suppress overactivation of our immune system. The prize was unusual in that Brunkow made her discoveries while leading an industry R&D team at Darwin Molecular (now defunct). Ramsdell and Sakaguchi are also co-founders of two prominent biotech companies developing Treg therapies: Ramsdell’s Sonoma Biotherapeutics is developing autologous Treg therapies against arthritis and hidradenitis suppurativa, together with a LFA3-IgG1 fusion molecule for depleting CD2+ effector T cells; and Sakaguchi’s Coya Therapeutics is developing a low-dose interleukin 2 (IL-2)/CTLA-IgG1 fusion combination for amyotrophic lateral sclerosis and other neurodegenerative disorders; the Nobel prize likely helped boost Coya’s announcement in October to raise $20 million in follow-on funding on the public markets.

Tregs have long attracted the attention of drug developers interested in autoimmune conditions, diseases where the immune system is overactive. But progress in this field has been slow, and the first clinical results for T-reg cell therapies are only now beginning to emerge in liver transplantation and kidney transplantation. (Low-dose IL-2 treatments that promote Tregs have also begun to show promise in lupus and systemic sclerosis patients.)

The overarching idea behind Treg cell therapy has been to isolate these cells from a patient, introduce/upregulate expression of the FOXP3 transcription factor that marks them from other T cells, and expand them before giving them back to the patient.

Early attempts to develop this autologous therapy failed in part because Tregs are less numerous in the peripheral blood than effector CD4/CD8 T cells, difficult to isolate and problematic to expand. Moreover, the isolated Tregs are polyclonal, targeting multiple antigens. Approaches that expanded this unmodified polyclonal population of cells and put them back into patients resulted in a ‘diluted’, clinically insignificant, therapeutic effect.

To address this problem, companies are now turning to leverage advances in the chimeric antigen receptor (CAR)-T cell therapy field. A whole slew of Treg cell therapies is being engineered with CARs or T-cell receptors (TCRs), allowing targeting to specific antigens in specific organs.

As we mentioned above, the most advanced of these are in the organ-transplantation field, where chronic immunosuppression renders patients susceptible to infections that can be lethal. Sangamo Therapeutics’ TX200 and Quell Therapeutics’ QEL-001 are CAR-Treg therapies for renal- and liver-transplant rejection, respectively. These assets, which are in phase 1/2, both bind to human leukocyte antigen HLA-A2, which is exclusively expressed on the transplanted donor organ, ensuring that the Tregs travel exclusively to the place where they are needed. Elsewhere, Sonoma is also developing an autologous CAR-Treg therapy, SBT-77-7101, that targets citrullinated proteins abundant in rheumatoid arthritis (for which Sonoma recently announced positive interim phase 1 data) and the skin condition hidradenitis suppurativa.

A second focus for companies has been on TCR-engineered Tregs. The great theoretical advantages of TCRs over CARs are that 1) they have high sensitivity at low antigen density, 2) they focus exclusively on antigen-presenting cells which then reeducate/suppress effector T cells; 3) they don’t bind soluble antigen and 4) most autoimmune diseases are driven by intracellular proteins presented as processed peptides in the context of HLA. As yet, however, only a few companies are pursuing the approach. One example is GentiBio, which is developing GNTI-122 for type 1 diabetes. This Treg product expresses a TCR targeting a fragment (IGRP 305–324) of the pancreatic islet-specific antigen glucose-6-phosphatase catalytic subunit-related protein (IGRP). Another pioneer in this area, Abata Therapeutics, had also been developing a TCR-engineered Treg therapy (targeting myelin peptide/HLA-DRB1*15:01 for multiple sclerosis); however, the frosty financing environment in the first half of 2025 meant it ran out of cash and Abata closed its doors in August.

One challenge that all Treg cell therapies face is the plasticity of these cells and their tendency to shape shift into effector T cells, a phenotypic change that, in the therapeutic setting, could lower efficacy or even exacerbate pathology. One approach to address this problem has been to modify the cells by overexpressing the transcription factor FOXP3, the master regulator of Treg development. For example, as methylation of the FOXP3 promoter under inflammatory conditions can turn Tregs Into effector T cells, Quell’s Tregs are engineered with a methylation-resistant FOXP3 that compels the cells to remain in their suppressor phenotype. And to bring us back to where we started, Nobel laureate Sakaguchi turns out to be a serial entrepreneur, founding another company, Regcell, that recently relocated from Japan to the US on the back of a $45.8 million financing back in March. The company is using small-molecule CDK8/19 inhibitors that act as epigenetic modulators to lock in FOXP3+ Tregs that show a stable suppressive phenotype in vivo.

But Treg cell therapies still face stiff competition. Ironically, perhaps, from their antithesis: the effector CAR-T cell. Pioneering work by Georg Schett’s group at Friedrich Alexander University Erlangen-Nuremberg has galvanized numerous efforts to develop CAR-T depleters of pathogenic B-cell or plasma-cell subsets in autoimmune conditions. Evidence is growing for the clinical efficacy of this approach in diseases such as lupus or myasthenia gravis.

But the holy grail would be to dispense with cell therapy altogether and promote Treg activity in situ, without the need for purification and modification/expansion outside the body. By focusing on injectable biologics, many companies can bring products to market that are easily accommodated into current clinical practice, dispensing with the need for leukopheresis (an approach alien to most rheumatologists) and the complex logistics of ex vivo cell therapy.

Nektar Therapeutics’ rezpegaldesleukin is a pegylated IL-2 given at low doses that acts on CD25, the high-affinity IL-2 receptor enriched in Tregs. The company recently reported positive phase 2 data in atopic dermatitis. Elsewhere, Egle Therapeutics and Mozart Therapeutics have discovery programs developing bispecific antibody Treg engagers for multiple autoimmune diseases. TrexBio has developed a peptide agonist of tumor necrosis factor receptor 2 (TNFR2), announcing in June the dosing of its first participant in a phase 1 trial for atopic dermatitis and other inflammatory diseases. Zag Bio is another T-cell engager play that recently came out of stealth,

The Treg field can rightly celebrate its Nobel recognition and the progress made towards bringing this cell type to patients. Although it will likely be several years before we gain a full picture of how Treg biology can be leveraged to fight autoimmune disease, the field eagerly awaits the readout from early efficacy trials of cell therapies and potentially an FDA-approved product for the biologics in later development.

Kobe Biomedical Innovation Cluster (KBIC) Joins RESI JPM 2026 as Gold Sponsor

28 Oct

By Claire Jeong, Chief Conference Officer, Vice President of Investor Research, Asia BD, LSN

Life Science Nation is proud to announce that the Kobe Biomedical Innovation Cluster (KBIC) will serve as a sponsor for RESI JPM 2026, continuing its mission to promote innovation, entrepreneurship, and global collaboration in life sciences. 

As part of this sponsorship, KBIC will host the Kansai Life Sciences Accelerator Program (KLSAP) 2025 Demo Day at RESI JPM 2026 on Tuesday, January 13, 12:00 – 2:00pm PT at the Marriott Marquis San Francisco. The Demo Day will feature 3 startups that are part of the KLSAP 2025 Cohort as well as other member companies of KBIC, to be announced as the event approaches. This initiative will provide participating companies with global exposure, strategic investor connections, and the opportunity to pitch to an international audience of early-stage investors and strategic partners across life science and healthcare sectors.

Interested in joining and receiving updates on the KLSAP 2025 Demo Day? Please contact Claire Jeong, VP of Investor Research, Asia BD, at c.jeong@lifesciencenation.com 

Introduction of Kobe Biomedical Innovation Cluster (KBIC)
Located in the heart of Kobe, Japan, the Kobe Biomedical Innovation Cluster is one of the nation’s leading ecosystems dedicated to the advancement of biomedical research and commercialization. With more than 340 organizations, including research institutes, hospitals, and life science companies, KBIC plays a vital role in bridging academia, government, and industry to accelerate innovation and improve global health outcomes. 

By partnering with RESI JPM 2026, KBIC aims to strengthen international collaboration and support Japanese startups seeking to expand their networks and raise global awareness for their technologies. Through this continued engagement, KBIC and LSN will work together help founders access global capital and strategic resources to advance from concept to commercialization. 

About Kansai Life Sciences Accelerator Program (KLSAP)
Powered by KBIC, the Kansai Life Sciences Accelerator Program (KLSAP) supports early-stage life science and healthcare startups in the Kansai region through tailored mentorship, commercialization guidance, and access to global investor networks. 

The 2025 KLSAP Cohort will participate in RESI JPM 2026 to present their innovations to a diverse investor audience, gain valuable feedback, and establish partnerships that can help drive their technologies toward global markets. The cohort’s participation exemplifies KBIC’s commitment to supporting international expansion and facilitating cross-border collaboration in life sciences. 3 companies have been selected for this year’s KLSAP Cohort, with descriptions of each company added below:

C-Biomex
Founded in 2017, C-Biomex is a bio-venture dedicated to advancing novel theranostics using its proprietary peptide discovery platform, CUS™. The platform enables identification of peptides with high stability and specificity through a three-step process involving a high-purity library, an innovative screening protocol that minimizes background interactions, and direct sequencing via a proprietary algorithm. C-Biomex focuses on radiopharmaceutical development, positioning itself at the intersection of diagnostics and therapeutics to accelerate peptide-based solutions for global biomedical applications.

GeneMedicine
GeneMedicine, founded in 2014 and based in Seoul, develops oncolytic viruses engineered to selectively replicate in and kill cancer cells while stimulating an anti-tumor immune response. Its GM-oAd platform is designed for systemic delivery of oncolytic adenoviruses with enhanced tumor specificity, immune activation, and ability to overcome physical tumor barriers. In addition to its therapeutic pipeline, GeneMedicine is expanding into CDMO services and novel drug-delivery systems, building a sustainable and diversified business model.

iXgene
iXgene is a Japanese life sciences company focused on developing therapies for intractable diseases using genome editing and induced pluripotent stem (iPS) cell technology. Its proprietary platform combines advanced genome editing tools, such as CRISPR, with iPS-derived therapeutics targeting indications including malignant brain tumors and brain injury. iXgene collaborates with academic institutions and pharmaceutical partners to translate next-generation regenerative and gene therapies into the clinic, aiming to address high-unmet-need central nervous system diseases. 

LSN and KBIC invites all investors, industry leaders, and innovators to meet the KLSAP 2025 Cohort at RESI JPM 2026. Together, they will continue to advance global innovation and foster meaningful connections across the life sciences ecosystem. 

Register for RESI JPM

Confirmed Investors at RESI London 2025 

21 Oct

By Claire Jeong, Chief Conference Officer, Vice President of Investor Research, Asia BD, LSN

Life Science Nation (LSN) is thrilled to announce the confirmed investors for RESI London 2025, taking place on December 4, at King’s Fund, 11 Cavendish Square, with virtual partnering on December 8–9. This premier event connects early-stage life science companies with a diverse array of global investors, facilitating meaningful partnerships and funding opportunities.

Meet the Confirmed Investors

RESI London 2025 will feature a robust lineup of investors spanning various sectors within the life sciences industry. Confirmed investors include:

This diverse group of investors represents a broad spectrum of interests, from pharmaceutical giants to specialized venture capital firms, ensuring that attendees have access to a wealth of expertise and potential funding sources.

Why Attend RESI London 2025?

RESI London 2025 provides an exceptional platform for early-stage companies to engage directly with top-tier investors across the life sciences industry, present innovations to a panel of esteemed judges in the Innovator’s Pitch Challenge (IPC), and receive valuable feedback. Attendees will have the opportunity to expand their network by building relationships with potential partners, collaborators, and industry experts, while also continuing discussions and meetings through virtual partnering on December 8–9, extending their reach and maximizing opportunities.

Whether you’re seeking funding, partnerships, or strategic alliances, RESI London 2025 provides the resources and connections necessary to propel your venture forward.

Register for RESI London >>

The Needle Issue #17

21 Oct
Juan-Carlos-Lopez
Juan Carlos Lopez
Andy-Marshall
Andy Marshall

On September 24, uniQure reported 36-months positive topline data from the phase1/2 study of their candidate AMT-130 for the treatment of Huntington’s disease. AMT-130 consists of viral vector AAV5 and a synthetic miRNA that targets exon 1 of the huntingtin gene. The results showed that AMT-130, directly injected into the striatum at a dose of 6 x 10^13 genome copies per subject, slowed disease progression at 36 months, as measured by the composite Unified Huntington’s Disease Rating Scale and by Total Functional Capacity compared with a “propensity score-matched external control”.

The results have yet to appear in the peer-reviewed literature, and some experts have urged caution in their interpretation, particularly with regard to the use of external historical control groups and the small number of patients (12 have completed the 36-month period). However, uniQure’s data have been widely welcomed as a breakthrough for a field that has experienced its fair share of false starts (most recently Roche/Ionis halting of its phase 3 dosing of tominersen in 2021 after promising phase 1/2a results). Moreover, the findings have bolstered interest in therapeutic approaches targeting exon 1 in the mutant allele in addition to reducing levels of the full-length huntingtin protein.

Huntington’s disease is a triplet repeat disease in which the huntingtin gene’s exon 1 bears the CAG repeat encoding the polyglutamine stretch that defines the pathology. It’s therefore not surprising that the N-terminal part of HTT and its product have attracted attention as drug targets. Broadly speaking, scientists have tried to get at exon 1 in three ways: targeting the gene itself to block transcription, targeting the mutant mRNA to inhibit translation, and targeting the truncated protein that results from the mutant mRNA. A recent review provides a thorough survey of the preclinical work on these three fronts.

From the drug-discovery point of view, the most advanced programs focus on the development of ASOs or RNAi sequences against the CAG repeat in the mutant mRNA. The motivation behind this strategy is in part the realization that transcription of mutant HTTexon 1 results in a shortened 102 nt mRNA that encodes a toxic protein prone to aggregation: HTTexon1.

To explain what goes wrong in RNA splicing, we need to take a quick detour into the biochemistry of mRNA processing. In any cell, pre-mRNA processing is a competition between the splicing machinery (which removes introns from transcribed genes by recognizing an intronic 5′ splice site, branch point, and 3′ splice site) and the machinery that carries out intronic polyadenylation. Intronic polyadenylation cleaves transcripts within introns and adds a poly(A) tail to the shortened exon–intron fragment transcript when intronic sequences like AAUAAA are present together with a downstream U/GU-rich element.

All of the above is important for Huntington’s because, in healthy brains (specifically the striatum), U1 small nuclear ribonucleoprotein (snRNP) is thought to sit on the cryptic polyA sites in intron 1 of HTT, blocking intronic polyadenylation and enabling accurate splicing of introns and production of a full-length (9,500 nt) mature HTT mRNA. In contrast, in Huntington’s patients, increasingly long CAG repeats in the huntingtin pre-mRNA are thought to sequester U1 snRNP, thereby interfering with formation of the spliceosome complex and making cryptic polyA sites accessible. The result is premature termination of transcription within intron 1, resulting in the generation of the the shortened 120 nt HTTexon1 mRNA transcript that encodes an N-terminal 17-amino acid HTTexon1 protein.

Until the UniQure program, most disease-modifying therapies in the clinic have sought to downregulate full-length huntingtin and haven’t discriminated between mutant protein and wild-type protein. The prevailing thinking has been that going after full-length HTT makes sense because both the full-length protein—and fragments of it produced by proteolytic degradation—were likely the main problem.

By targeting exon 1, AMT-130 aims to specifically reduce production of toxic HTTexon1. And several other drug developers have also started to pivot and focus more closely on targeting HTTexon1, with the hope that such approaches might have greater efficacy in reducing huntingtin aggregate nucleation.

Just this year, Alnylam/Regeneron recently took ALN-HTT02 into phase 1b testing. This siRNA is conjugated to a 2′-O-hexadecyl C16 palmitate lipid that enables traversal of the blood brain barrier. It targets a conserved mRNA sequence within huntingtin exon 1, leading to the RISC-mediated degradation of all HTT mRNAs. The approach downregulates both HTTexon1 and full-length HTT — and does not discriminate between the wildtype and mutant alleles.

There are other molecules in development that directly target the expanded CAG repeat in exon 1 that are allele-specific. Vico Therapeutics’ VO659 is an ASO with an allele-preferential mechanism of action, targeting expanded CAG repeats in the mutant transcript and inhibiting translation of the mutant allele via steric block. It is currently in phase 1/2a clinical trials, and the company announced positive interim biomarker data in September 2024.

Meanwhile, in the preclinical space, Sangamo/Takeda are developing a mutant-allele selective approach, focusing on blocking transcription of the huntingtin gene using lentiviral vector delivered zinc finger repressor transcription factors (ZFP-TFs) that target the pathogenic CAG repeat. They have shown that their ZFP-TFs repress >99% of disease-causing alleles while preserving expression of normal alleles in patient-derived fibroblasts and neurons. Lentivirally delivered ZFP-TFs lead to functional improvements in mouse models, opening the door to their potential clinical development.

Haystack is aware of at least three other companies developing therapeutics aimed at reducing the toxic effect of HTTexon1, but details of their programs are scarce. China-based HuidaGene Therapeutics is developing a CRISPR-based gene editing product to fix the mutant allele. Galyan Bio was developing GLYN122, a small molecule directly targeting HTTexon1, but the company seems to have ceased operations. Similarly, Vybion has been developing INT41, a functional antibody fragment against HTTexon1, but its current status is also unclear.

It is sobering that over 150 years’ since the first description of Huntington’s disease, which many think of as the archetypal monogenic disease, that we still lack a definitive understanding of its pathogenic mechanism. We don’t know whether the pathology arises from HTT protein, RNA, DNA or some combination of these. And despite the buzz surrounding HTTexon1, most of the data supporting its relevance to human disease still originates from work in mouse models, which recapitulate only certain aspects of the human disorder. That said, raised levels of HTTexon1 are present in patient brain biopsies, with the longer CAG repeats in individuals with juvenile Huntington’s resulting in higher levels of the truncated transcript.

It will be exciting to follow the progress of UniQure’s AMT-130 as our understanding of where in disease progression, and in which patients, this therapy will be most effective. And beyond HTTexon1, other therapeutics targeting alternative disease pathogenic mechanisms are on the horizon. Last month, Skyhawk Therapeutics reported promising phase 1/2 clinical results for it oral small-molecule splice modifier SKY-0515. Elsewhere, broadening understanding of DNA mismatch repair enzymes and the role of somatic repeat instability in the disease have led to investment in a flurry of startup companies focused on this mechanism. That work is now leading to broader excitement that therapies may become available for other difficult-to-treat triplet repeat diseases like Fragile X syndrome, Myotonic dystrophy type 1 and Friedreich ataxia, as demonstrated by the recent deal between Harness Therapeutics and Ono Venture Investment.

From RESI Boston to Global Growth: Bilix on Winning the Innovator’s Pitch Challenge

15 Oct
Myung Kim
  CaitiCaitlin Dolegowski

Bilix, recognized as a top Innovator’s Pitch Challenge winner at RESI Boston this past September, is making waves in the biotech space with its innovative multi-modality approach to inflammatory and autoimmune diseases. In this interview, Myung Kim, Founder and CEO, shares how participating in RESI Boston helped the company connect with key investors, refine its strategy, and advance its clinical milestones.

Hear firsthand how Bilix is driving progress in complex disease treatment and discover how your company can join the next generation of innovators pitching at RESI London and RESI JPM. Applications are now open.

Apply to Pitch at RESI London Apply to Pitch at RESI JPM

The Needle Issue #16

7 Oct
Juan-Carlos-Lopez
Juan Carlos Lopez
Andy-Marshall
Andy Marshall

Commercial interest in targeted epigenetic therapies — agents that target specific genes without altering bases in their sequence or causing double-strand breaks or even single nicks in the DNA — continues to grow, as underscored by the latest financing announced by Epigenic Therapies. The unique selectivity and specificity of targeted epigenetic therapeutics offers compelling advantages over small-molecule epigenetic drugs, which target a specific epigenetic reader, writer or eraser, but affect genes across the genome and affect many diverse tissues, leading to narrow therapeutic windows that make them difficult to develop for conditions outside of cancer.

Today, Haystack is aware of at least eight private companies (nChroma Bio (resulting from a merger of Chroma and Nvelop), Encoded TherapeuticsEpigenic TherapeuticsEpitor TherapeuticsMoonwalk BioNavega TherapeuticsRegel Therapeutics, and Tune Therapeutics), and two public companies (Modalis Therapeutics and Sangamo Therapeutics) that are pursuing the targeted epigenetic approach against disease (let us know if you know of any others). Another company, Flagship Pioneering’s Omega Therapeutics, went out of business in August after filing for bankruptcy in February. A smaller set of companies are also pursuing targeted epigenetic therapies against RNA modifications.

All of these therapies are designed around an alluring set of simple principles: take a gene-specific DNA-binding domain — zinc-finger proteins (ZFPs), ‘dead’ Cas9 (dCas9) with mutations in its RuvC and HNH endonuclease domains, or transcription activator-like effectors (TALEs) — and tether it via an amino acid linker to an enzymatic effector module. This effector is either an enzyme that directly places or removes a specific epigenetic modification (e.g., TEThistone demethylases or the histone acetyltransferase p300) or a transcriptional activator (e.g., VP16) or repressor (e.g., KRAB).

A particularly compelling application for such treatments is genetic disorders of haploinsufficiency (like Dravet’s) or imprinting disorders (like Angelman’s or Prader Willi). There are also many of these diseases where the therapeutic genes would be too large (>4.0 kb) for a traditional AAV gene-therapy approach; in contrast, epigenetic editing machinery can be packaged into an AAV vector.

Currently, the diseases being pursued by companies include hepatitis Bhypercholesterolemia, epilepsies (SCN1A (Dravet syndrome) and SCN2A), chronic pain, and muscular dystrophies. Those with the most advanced programs are Encoded’s AAV-9 intrathecally delivered SCN1A-targeting zinc finger protein linked to a VP16 activation domain in phase 1 testing for Dravet and Sangamo’s AAV- STAC-BBB-delivered SCN9A-targeting zinc finger protein linked to a KRAB repressor domainin a phase 1/2 trial for patients with chronic pain. In this context, two papers published in the past couple of weeks represent important proofs of the efficacy of targeted epigenetic therapies.

In a first paper published in Nature, the groups of Kevin Bender and Nadav Ahituv at UCSF (scientific co-founders of Regel Therapeutics) sought to test a targeted epigenetic therapy in patients with SCN2A mutations that exhibit decreased NaV1.2 function. These individuals have impaired action potentials, synaptic transmission and manifest diverse neurological symptoms and seizures, with few therapeutic options, beyond symptomatic anti-seizure medications that have a dizzying range of debilitating side effects.

The UCSF teams leveraged conditional genetic knock-in technolgoy or CRISPRa technology — an AAV-delivered SCN2A-promoter-targeting dCas9 fused to a VP16 activator domain — to upregulate transcription of the SCN2A gene. Using either approach, they were able to boost transcript levels from the healthy SCN2A allele, ameliorating electrophsiological deficits and chemical-induced seizure activity in Scn2a+/− mouse models. Importantly, these effects were seen in adolescent mice, which conventionally have been thought to be too old to respond to treatment. This suggests that rescue of normal dendritic excitability with epigenetic agents at later stages of life might be capable of restoring neuronal function, with implications for patients.

In a separate set of experiments, the authors showed that their epigenetic approach was able to rescue neurophysiological activity in haploinsufficient neuron-like cells from SCN2A-knockout human embryonic stem cells. This cross-species reproducibility provides further confidence that CRISPRa-mediated upregulation could be translated into human treatments.

In a second paper in Nature Biotechnology, a team from Epigenic Therapeutics (Shanghai, China) describes the design and validation of optimized epigenetic regulators (EpiRegs) to silence genes in a precise, durable way without altering genomic DNA. Epigen’s Shaoshai Mao and his collaborators at the Chinese Academy of Sciences and the First Affiliated Hospital of Anhui Medical University tested combinations of TALE- and dCas9-based systems, systematically optimizing effector domains and fusion architectures, looking for effective regulators of gene expression. The best-performing variant, EpiReg-T (a TALE-based system, which eliminates the need for a guide RNA), achieved 98% silencing of target genes in mice, substantially outperforming dCas9-based versions.

Using lipid nanoparticles (LNPs) for delivery, a single administration of EpiReg-T in macaques induced long-term repression of the PCSK9 gene, which encodes a validated target for the treatment of hypercholesterolemia. EpiReg-T reduced PCSK9 expression by >90% and LDL-cholesterol by about 60%, with effects persisting for nearly a year (343 days).

Mechanistically, the team used whole-genome bisulfite sequencing and cleavage under targets and tagmentation (CUT&Tag) to show that EpiReg-T induced stable DNA methylation and repressive histone marks at the PCSK9 promoter. The silencing persisted even after liver regeneration and could be reversed by targeted epigenetic activation. Multiomic analysis in mice, macaques and human hepatocytes confirmed high specificity of the manipulation and minimal off-target effects. Overall, these finding, as well as similar results reported in April by Chroma Medicine, establish epigenetic editing as a promising therapeutic platform for durable and reversible gene silencing.

Overall, targeted epigenetic therapies offer clear safety advantages over small molecules that indiscriminately target all genes under the control of an epigenetic eraser or writer enzymes. They avoid the potential risks associated with creating single- or double-strand DNA breaks associated with CRISPR/Cas9 gene, base or prime editing therapies. And they avoid the insertional mutagenesis risks associated with traditional viral gene therapies. What’s more, in applications requiring gene upregulation in haploinsufficient disease, these approaches maintain the endogenous regulatory context of the functional allele. This is in stark contrast to traditional gene-therapy replacement approaches, where overexpression of an introduced therapeutic gene can often lead to toxicities and immunogenecity.

Of course, questions still linger around the persistence of the changes elicited by these epigenetic agents. Will they persist in patients for long periods — for years or even decades? If they can, then epigenetic therapy may offer compliance advantages over small molecules, antibodies, ASOs or even siRNAs, which have treatment durations of six months or less.

Like all genetic medicines, though, delivery remains the key headache. Thus far, AAV vectors, lipid nanoparticles or ribonucleoproteins (RNP) have all been explored to deliver epigenetic therapies (with some evidence that RNPs might have advantages because they can result in higher dCas9 dosages within target cells). For AAV vectors, the fact that targeted epigenetic therapy might only need to be given once might be an advantage in terms of immunogenicity/neutralization concerns against the vector.

A broader point is that the safety profile of targeted epigenetic editors may offer advantages if AAV vectors are used as delivery vehicles: if the epigenetic agents themselves can be delivered at high dosage (given their intrinsic favorable safety profile and presumed maximal tolerated dose), perhaps AAV vector dosages could be lower than current practice. With many current gene therapies requiring dosages of 1013 or more viral particles/kg in patients, it is increasingly becoming clear that unacceptable liver toxicities arise from the virus at these levels in clinical studies. It will be interesting to follow this space as more agents enter human testing.

Investor Panels at RESI JPM 2026 

30 Sep

By Claire Jeong, Chief Conference Officer, Vice President of Investor Research, Asia BD, LSN

Life Science Nation (LSN) is excited to announce the lineup of investor panels at RESI JPM 2026, taking place January 12–13. These panels bring together leading venture capitalists, corporate investors, and strategic partners to discuss the latest trends, challenges, and opportunities in life science investing. From early-stage “first check” VCs to specialized sectors like Cell & Gene Therapy, AI in Healthcare, and Longevity, RESI JPM offers unparalleled insight into the funding landscape. 

Day 1 – January 12 

  • 9:00 AM | “First Check” VCs Panel: Learn how early-stage investors evaluate founders, milestones, and the critical first institutional check. 
  • 10:00 AM | Medtech Strategics Panel: Explore how strategic investors from leading medtech companies drive growth through partnerships and acquisitions. 
  • 11:00 AM | Asia Cross Border Investments Panel: Sponsored by Enterprise Singapore, a RESI JPM Title Sponsor
  • 1:00 PM | Family Offices Panel: Hear how family offices provide patient, mission-driven capital to early- and growth-stage companies. 
  • 2:00 PM | Cell & Gene Therapy Panel: Discover where capital is flowing in this transformative area of medicine. 
  • 3:00 PM | When Should Companies Exit Stealth Mode?: Gain insight into timing the transition from quiet development to public visibility. 
  • 4:00 PM | Aging and Longevity Panel: Learn how investors are deploying capital to solutions addressing the world’s aging population. 

Day 2 – January 13 

  • 9:00 AM | Partnering with Global Pharma Panel: Understand how big pharma approaches early-stage partnerships and collaboration. 
  • 10:00 AM | Women’s Health Panel: Explore investment opportunities in an underserved market with enormous potential. 
  • 11:00 AM | AI in Healthcare: Discover how AI is reshaping drug development and care delivery. 
  • 1:00 PM | Orphan & Rare Diseases Panel: Learn about unique challenges and opportunities in niche, high-need markets. 
  • 2:00 PM | Corporate VC Panel: Hear how corporate venture capital balances strategic and financial goals to accelerate innovation. 
  • 3:00 PM | Techbio & Synthetic Biology Panel: Explore investment trends at the intersection of biology and technology. 
  • 4:00 PM | 2026 Outlook: VC Perspectives Panel: Gain insight into where investors see healthcare innovation heading in the coming year. 

These panels are designed not only to share insights but also to foster dialogue between investors and innovators. If you are interested in speaking on a RESI JPM investor panel, please reach out here. 

Registration for RESI JPM 2026 is now open, with Early Bird rates available until October 24. Don’t miss your chance to connect with top investors, strategic partners, and fellow innovators at one of the premier life science partnering events. Register for RESI JPM 2026 

Register for RESI JPM >>