Tag Archives: science

TrilliumBiO at RESI JPM: Advancing Biomarker Discovery into Patient-Ready Diagnostics 

6 Jan

Interview with Laura Vivian, CEO of TrilliumBio

Laura Vivian
CaitiCaitlin Dolegowski

Caitlin Dolegowski (CD): Could you introduce TrilliumBiO and share your core focus areas in life sciences? 

Laura Vivian (LV): TrilliumBiO is a biomarker discovery company specializing in the development and commercialization of novel diagnostic tests to translate scientific discoveries into real-world clinical impact.  

The company has launched over 100 assays, collaborates with partners domestically and internationally, and processes over 500,000 samples annually through a multi-accredited, CLIA-certified laboratory. We work with industry innovators in biotech and pharma, as well as academic medical centers, foundations, and patient advocacy groups. Headquartered in Maryland, just outside Washington, D.C., we operate within the nation’s third-largest biopharma hub. Our multidisciplinary leadership team brings decades of experience delivering value to patients and partners.

Our core focus is expanding access to critical areas of testing that align with emerging therapeutics and scaling diagnostic solutions that support the development and adoption of new treatments.

CD: What types of early-stage companies or technologies are you most interested in meeting at RESI?                                                                                                     

LV: First, we are excited to be able to sponsor RESI JPM 2026 and be part of this great community. Thank you for having us. 

We believe we are ideally positioned at the intersection of the life sciences ecosystem to create enormous value for our partners. We’re especially interested in engaging with companies advancing novel therapeutics and diagnostics, investors seeking biomarker and clinical diagnostic expertise for their portfolio companies, and organizations with technologies to in-license or co-develop. Our team brings speed, efficiency, and deep expertise in biomarker strategy and development to help accelerate that journey. 

CD: What are some of the key scientific or commercial challenges your team is focusing on solving in the coming year? 

LV: At TrilliumBiO, we see ourselves as partners from discovery through delivery, working alongside our clients across R&D, regulatory milestones, and clinical use. That partnership means solving critical barriers that often slow diagnostic development, limit patient access, and delay therapeutic approvals.

We’re not only able to bring new assays to market; we also scale testing volume and accelerate the commercialization of existing assays. Our regulatory expertise and audit readiness gives partners confidence that FDA submissions will succeed, ensuring progress isn’t stalled by compliance hurdles.

Education is foundational to our work, strengthening disease awareness among both patients and providers. With the support of more than 15,000 in our physician network, we make sure that every test result is clinically meaningful and actionable.

CD: Is there anything you’d like the RESI community to know about TrilliumBiO’s mission or upcoming milestones? 

LV: We recently announced a strategic partnership with Oncobit, an international leader in precision oncology, to bring advanced monitoring solutions for uveal melanoma, including molecular residual disease (MRD) testing, to the U.S. We’re also preparing awareness initiatives around rare diseases like lymphangioleiomyomatosis (LAM), supported by our VEGF-D assay, and blood-based biomarkers that enable earlier detection of Alzheimer’s disease. Our mission is to advance diagnostics that make a meaningful difference in patient care.

The RESI community should stay tuned, as we’ll be sharing more about these milestones and others soon.

CD: Are there any recent accomplishments that you want us to highlight? (Awards, Grants, FDA Approvals, Social Corporate Responsibility programs, etc.) 

LV: We were honored to be named a finalist for the Emerging Life Sciences Company of the Year at the 2025 ICON Awards presented by the Maryland Tech Council, recognizing innovation and impact in the state of Maryland’s life sciences sector. Building on that momentum, we secured FDA approval for a rare disease direct to consumer test within just six months, a milestone that reflects our ability to rapidly translate discovery into patient-ready diagnostics. Alongside these achievements, we continue to strengthen partnerships with patient advocacy groups, ensuring that our breakthroughs are paired with meaningful support for the communities we serve.

The Needle Issue #21

6 Jan
Juan-Carlos-Lopez
Juan Carlos Lopez
Andy-Marshall
Andy Marshall

On December 9, the Italian charity Fondazione Telethon made waves by becoming the first non-profit organization to obtain FDA approval for an advanced therapy: Waskyra (etuvetidigene autotemcel) is an ex vivo lentiviral gene therapy indicated for the rare immune deficiency Wiskott-Aldrich Syndrome. Fondazione Telethon’s accomplishment underscores the impact that philanthropic organizations can have on drug discovery and has rightly been celebrated by patient-advocacy groups working to develop therapies for other conditions of limited commercial interest. How can this wider universe of disease foundations emulate Fondazione Telethon’s achievement and leverage the lessons from Waskyra’s approval?

Drug development for rare and ultra-rare conditions faces multiple challenges: limited understanding of the disease, paltry funding, a lack of business models providing a return on investment, regulatory obstacles, manufacturing and distribution barriers, and so on. For all these reasons, venture capitalists and pharma companies have shied away from diseases that, like Wiskott-Aldrich Syndrome, affect small populations of patients. This is the unspoken dirty secret of modern medicine. Current commercial drug development is unfit for >90% of all known diseases.

With the biopharma industry steering clear of these conditions, patient advocacy groups and other charities are trying to fill the void. According to a recent study commissioned by the US Department of Health and Human Services (HHS), 585 advocacy groups fund “medical product development” activities in the United States. Why has it taken an Italian non-profit organization to be the first to cross the US FDA approval finish line?

The organization responsible for development of Waskyra is the San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), a 30-year-old partnership between Telethon Foundation and Milan’s Ospedale San Raffaele. Over those three decades, SR-TIGET has raised over half a billion euros in philanthropic capital to build internal capabilities equivalent to those available in a clinical-stage biotech company: target discovery, preclinical modelling, regulatory strategy, phase 1/2 clinical trials and registration. In other words, unlike most patient foundations and groups, this organization has accumulated the resources to generate the data necessary to walk the full path to approval, independently of the need to collaborate with a pharmaceutical company.

Out of the 585 patient advocacy groups cited in the HHS report, only 11 operate with their own research staff and lab space. In contrast, 106 advocacy groups fund life-science companies, and 536 fund academic or medical institutions. This implies that, at most, only 1.9% of US patient groups use a model that shares at least some similarities with SR-TIGET’s. This is important to emphasize because having all these in-house capabilities makes an organization less dependent on industry partnerships, which can be difficult to secure in the first place and are subject to change if economic conditions and/or company priorities alter.

Of course, it would be disingenuous to expect all patient foundations to adopt the SR-TIGET model. According to the HHS report, the mean annual revenue of an advocacy group capable of funding clinical trials is ~$32 million, with their median annual revenue at ~$3.5 million. Most of the 585 charities have no hope of achieving these financing levels, particularly those advocating for patients living with ultra-rare conditions. At the same time, these figures represent the reality of commercial development, and they should be part of the calculus used by patient advocacy groups to define the scope of their activities and inform their fundraising strategy.

It is worthwhile noting that Waskyra is not Fondazione Telethon’s first rodeo. SR-TIGET was responsible for much of the work behind two other approved ex vivo lentiviral gene therapies for ultrarare conditions: Strimvelis (for ADA-SCID; European approval in 2016) and Lenmeldy (for metachromatic leukodystrophy; European approval in 2020FDA in 2024). In both cases, the organization partnered with for-profit companies to take the drugs to market, providing SR-TIGET with crucial training in the drug-approval process before they achieved their recent independent success with Waskyra. At the same time, those early experiences made it painfully clear that the story does not end with regulatory approval, as many without experience of developing medicines assume.

In 2018, Strimvelis, which had been developed by SR-TIGET in collaboration with GlaxoSmithKline, was acquired by Orchard Therapeutics along with the rest of the pharma’s rare disease gene-therapy portfolio. After taking the therapy to approval, however, Orchard pulled the plug and decided to cease marketing of the therapy. Fondazione Telethon then stepped in and had to arrange the transfer of the marketing authorization from the company to the foundation. Although SR-TIGET has been able to make the therapy available in Italy, Strimvelis remains unavailable elsewhere in Europe. This is unsurprising as setting up distribution networks across continents requires deep expertise and investment, and has long been the sole purview of commercial organizations.

In the case of Waskyra, the manufacturing and distribution strategy for the United States is not yet clear, but a week after the FDA decision, Fondazione Telethon signed a memorandum of understanding with the Orphan Therapeutics Accelerator (OTXL) under which Orphan Therapies (an OTXL subsidiary) will become the exclusive commercialization partner for the therapy. OTXL is a separate, US-based, non-profit organization focused on the clinical development of “shelved” ultra-rare disease treatments. That two independent non-profit organizations have come together to deliver a life-changing therapy to patients is of great significance and perhaps underappreciated by the wider community. It will be interesting to see how this partnership evolves, particularly with regards to pricing.

Indeed, pricing has been another thorny issue for Fondazione Telethon. The cost of Strimvelis is reportedly ~€600K. Between July 2023 (when the foundation obtained the marketing authorization) and the end of 2024, SR-TIGET has treated only two ADA-SCID patients (~14 children are born every year with the disease in Europe). Of most concern, the associated costs for these two treatments were €4.7 million. Although Fondazione Telethon is a non-profit entity, multi-million Euro losses of this kind simply are unsustainable. It will therefore be important that the foundation sets a price of Waskyra on the US market where it can at least recoup the costs of its treatment — if not make a return that it can invest back in further R&D efforts.

Which brings us to perhaps the most important takeaway from SR-TIGET’s Waskyra approval. It is striking how this foundation has focused very heavily on the development of gene therapies, and in particular ex vivo lentiviral gene therapies. Luigi Naldini, leader of SR-TIGIT, is a pioneer in the study of lentiviral vectors, and a lot of the research conducted at the institute over the years has focused on the optimization of vectors and on understanding the biology of hematopoietic stem cells with the eventual goal of fixing disease-causing mutations. According to the SR-TIGET website, the organization has treated ~25% of patients who have received hematopoietic stem cell-based gene therapy worldwide.

In contrast, most patient groups have a starting point around a specific disease (or a subset of related diseases) for which drug-discovery projects are launched, often using multiple therapeutic modalities to have as many “shots on goal” as possible. These are two fundamentally different approaches. SR-TIGET has focused on one therapeutic modality and then deployed it across different diseases; most other foundations focus on one disease and then invest in many different therapeutic modalities.

Ultra-rare drug developers and patient groups should take note: an increasing body of data suggests that organizations achieving development success have adopted a similar platform-based approach to bringing therapeutics to patients. And the reason for this is simple: putting together an entire discovery, commercialization and distribution apparatus for more than one therapeutic modality is simply unaffordable for most independently funded non-profits.

There are now several examples to illustrate this point. In the field of antisense oligonucleotides (ASOs), n-Lorem Foundation has achieved success using solely the ASO modality, with >35 kids suffering from 17 different “nano-rare” diseases now treated: CHCHD10/ALSTARDBPLMNB1ATN1SCN2A encephalopathyPACS1ASXL3/Bainbridge RopersMAPK8IP3/ALShnRNPH2/ASDH3F3/chondrosarcomaKIF1A/KANDUBTF/CONDBATUBB4A-related leukodystrophyEPL1/familial dysautonomiaserum amyloid A amyloidosis, or FLVCR1 and PRPH2 retinopathies. Again, success has been achieved by developing a single modality across an incredibly wide range of nano-rare neurodegenerative, neurodevelopmental, autonomic nervous system, kidney and retinal diseases.

For adenoviral associated virus serotype 9 (AAV-9) gene therapy, social purpose corporation Elpida Therapeutics continues to make progress with its platform for ultra-rare conditions (recently receiving an $8 million grant from the Center for Regenerative Medicines) Again, Elpida is focusing on just one modality and developing it against multiple neurodevelopmental and neurodegenerative conditions: Charcot-Marie-Tooth disease type 4JSpastic Paraplegia 50 (SPG50), and Neuronal Ceroid Lipofuscinosis 7 (CLN7). Similarly, Nationwide Children’s Hospital, which carried out the original work leading to approval of Novartis’ AAV-9 gene therapy (Zolgensma) for spinal muscular atrophy, has deep resources and expertise, enabling it to serve as a hub for this type of gene therapy. In recent weeks, it announced the start of a clinical AAV-9 program for SLC6A1 neurodevelopmental disorder.

Elsewhere, one might argue that, in base editing, we are also starting to see yet another example of a modality hub emerge. Following the success of base editing around CSP1 for baby KJ (highlighted in Issue #6 of The Needle), the Center for Pediatric CRISPR Cures is building a hub around gene editing R&D expertise — an initiative that the Innovative Genomics Institute’s Fyodor Urnov is also promoting.

What does all this mean? We would suggest that academic medical centers and patient foundations interested in developing ultrarare therapies should consider the platform-based approach as an efficient way to deploy their capital. Evidence is clearly building that focusing on one modality works. For therapies beyond that single modality, organizations might be better served by identifying another resource-rich ‘hub’ organization for development programs in their disease.

Another advantage of a large platform-based hub approach with a host of different disease spokes is that it would result in a diversified portfolio of projects in which each project is a separate shot on goal. This may achieve the scale to deliver a successful drug and, therefore, generate income. In fact, MIT economist Andrew Lo has used financial-engineering techniques to show that a portfolio of ultra-rare disease projects could generate a return on investment exclusively from the sale of FDA’s Priority Review Vouchers (PRVs), which pharma companies seek to acquire for a median >$100 million. Although the reauthorization of the PRV program by the US Congress is uncertain, we think this is a tantalizing insight because it points to a sustainable path for the development of ultra-rare therapies.

2025 has been a landmark year for ultrarare therapies. Besides the FDA approval of Waskyra, the successful use of base editing to treat CPS1 deficiency in Baby KJ in just seven months, the acceptance of >160 patients into n-Lorem programs, and the administration of several gene therapies to ultrarare patients (Urbagen, an AAV-9 gene therapy for CTNNB1 syndrome being yet another recent example) suggest that ultrarare disease treatments are finally gaining momentum. With SR-TIGET, n-Lorem, Nationwide Children’s and Elpida showing the way, perhaps a development model is finally emerging to treat these debilitating childhood diseases that devastate too many families around the world.

RESI JPM 2026 Program Guide Released  

29 Dec

By Dennis Ford, Founder & CEO, Life Science Nation (LSN)

DF-News-09142022

Life Science Nation (LSN) presents the RESI JPM 2026 Program Guide for its flagship hybrid conference, held January 12–13 in person at the San Francisco Marriott Marquis, followed by three virtual partnering days on January 14, 19 & 20.

RESI JPM connects early-stage life sciences innovators with global investors during the heart of JPM Healthcare Week. Highlights include the Innovator’s Pitch Challenge, featuring 96 emerging companies presenting to investor judges, along with expert panels, interactive workshops, and a diverse exhibitor showcase spanning biotech, medtech, diagnostics, and digital health.

Positioned at the center of JPM Week, RESI JPM offers unmatched access to capital, partnerships, and industry insight. Registration is now open.

Companies to Watch in 2026

16 Dec

By Dennis Ford, Founder & CEO, Life Science Nation (LSN)

DF-News-09142022Life Science Nation was built to connect scientist-entrepreneurs and fundraising CEOs with global capital, licensing, and product-collaboration partners. This work has created a unique vantage point into what truly drives successful matches between early-stage companies and the buy side, revealing not only the science itself but also how companies mature over time, where they stall, and what ultimately earns investor and partner confidence.

The life science landscape continues to evolve at a remarkable pace. Across therapeutics, devices, diagnostics, and digital health, new tools and technologies are fundamentally reshaping early-stage development. Advances in artificial intelligence, machine learning, organoid systems, next-generation screening methods, and predictive modeling now allow founders to generate clearer, more actionable data far earlier than was possible even a decade ago. These shifts are compressing timelines that once required years and large amounts of capital, and they are changing how and when global investors and strategic partners are willing to engage.

Across hundreds of investor conversations over the years, a consistent pattern has emerged in how risk is evaluated. While mandates differ, the underlying criteria tend to converge around a few fundamentals: the depth and credibility of the science, the quality and experience of the leadership team, the discipline of the development plan, and the strength of the data supporting forward momentum. Together, these factors determine whether a company is ready to engage meaningfully with the global market.

A similar lens is applied when evaluating companies referred to Life Science Nation through regional tech hubs, incubators, accelerators, universities, and national or state life science agencies. Many new technologies are, in reality, the product of decades of foundational research. When a founding scientist remains actively involved, it brings historical context, credibility, and continuity, materially reducing risk. Strong CEOs, particularly those with experience launching products inside established companies, add another layer of confidence through pragmatic decision-making and operational discipline.

Over time, this has shaped how we think about de-risking the stack. The strongest early-stage companies are not those that attempt to eliminate risk, but those that systematically convert unknown risk into understood risk. They address scientific, technical, regulatory, and commercial uncertainty in the correct order, with discipline and intent, before asking the global market to engage. They can clearly explain the remaining uncertainty, support it with data, and demonstrate steady forward progress.

At Life Science Nation, thousands of early-stage companies are encountered each year through the global partnering backbone, RESI conferences, and structured roadshow campaigns. Most are still early in their journey. Some have excellent science but are not yet ready to communicate it in a way that resonates with global investors. Others have passion and urgency but lack the data required for serious engagement. Many need more time to build the right team, define realistic milestones, and understand what it means to operate within a global partnering framework.

These companies demonstrate clarity of purpose and forward motion, articulate their science in ways that align with investor expectations, and execute against achievable milestones that generate data to support early decision making. They show signs of intentional de-risking, understand where uncertainty lives, and address it in the correct order with discipline and commitment. That is ultimately why they made this list. Without further ado…Drum roll, please….

Top Ten Companies to Watch in 2026

NeuroHope (CNS trauma and spinal cord injury)

NeuroHope is developing a PgP targeted nanoparticle delivery platform to enable sustained, targeted central nervous system drug exposure for acute spinal cord and brain injuries. The company’s lead asset, Polypram, is a rolipram-loaded nanotherapeutic designed to restore cAMP signaling, reduce inflammation, and improve functional recovery after spinal cord injury, addressing a long-standing delivery barrier that has prevented effective pharmacologic treatment in this setting.

NeuroHope stood out for its clear focus on the spinal cord injury bottleneck and its disciplined, translational data package demonstrating durable motor recovery in both rodent and large-animal models.

Website: https://www.neurohopetherapeutics.com


Bilix (clinical stage organ protection biotech)

Bilix is a clinical-stage biotechnology company developing synthetic PEGylated bilirubin nanoparticles for organ protection and inflammatory injury. Its lead program targets ischemia reperfusion injury by addressing oxidative stress, ferroptosis, and immune dysregulation following surgery and transplantation, with completed Phase 1 clinical testing and an ongoing Phase 2a study in cardiac surgery-associated acute kidney injury.

Bilix stood out for strong clinical execution, defensible chemistry, and a management team with demonstrated regulatory experience.

Website: https://www.bilix.com


Oncovita (measles-based oncolytic immuno-oncology)

Oncovita is developing MVdeltaC, an intratumoral measles virus-based oncolytic immunotherapy designed to convert immunologically cold solid tumors into targets the immune system can recognize and eliminate. By engineering a clinically familiar measles backbone with a C protein deletion, MVdeltaC drives potent immunogenic cell death and reshapes the tumor microenvironment, making previously hidden tumors visible to the immune system, much as PET imaging made occult disease visible to clinicians. Initial programs focus on pleural mesothelioma, with a clear strategy to expand into additional solid tumors such as triple-negative breast cancer.

Oncovita stood out for its mechanistic clarity and disciplined orphan-first strategy to establish clinical proof before broader expansion.

Website: https://www.oncovita.fr


Adaptyx (continuous cortisol monitoring platform)

Adaptyx is developing a continuous biomolecular monitoring platform designed to bring clarity to cortisol-driven disease. By enabling real-time measurement of cortisol dynamics, the company addresses a central blind spot in endocrinology: current diagnostics rely on static snapshots of a hormone that fluctuates throughout the day, which could change how conditions such as Cushing’s, Addison’s, and related disorders are diagnosed and managed.

Adaptyx stood out for reframing cortisol measurement as a clinical tool, much as continuous glucose monitoring has transformed diabetes care.

Website: https://adaptyx.bio/


Cureage (rare disease therapeutics for NF1)

Cureage is a rare disease-focused biotechnology company developing first-in-class therapeutics for Neurofibromatosis Type 1 and related disorders. The company targets the underlying biology driving tumor formation and disease progression in NF1, an area of significant unmet need. It works closely with the Children’s Tumor Foundation, reflecting deep alignment with the patient and clinical community.
Cureage stood out for its clear rare disease focus, strong biological rationale, and disciplined approach to de-risking development in a defined patient population.

Website: https://www.cureagetx.com


Qnity (Quantum computing drug discovery platform)

Qnity is a deep-tech life sciences company that applies quantum-electrochemical sensing to transform molecular screening and drug discovery. Its platform delivers ultra-sensitive, real-time measurements of molecular binding across a wide range of molecule types, enabling researchers and developers to identify and characterize interactions with greater precision and throughput than traditional methods like SPR or ELISA.

Qnity stood out for tackling a core bottleneck in early-stage drug development—the need for more accurate, accessible, and scalable binding data—by offering a single-chip quantum sensing solution that accelerates discovery and reduces risk in therapeutic and diagnostic pipelines.

Website: https://www.qnity.bio/


iQure(AAV gene therapy for rare CNS and metabolic disease)

iQure is developing a new class of treatments for brain disorders by restoring balance to glutamate, a key neurotransmitter that becomes toxic when dysregulated. What makes their technology unique is its focus on astrocytes—support cells in the brain—by enhancing the activity of EAAT2, the main transporter responsible for clearing excess glutamate.

iQure stood out for addressing a fundamental driver of neurological damage with a first-in-class, orally available small molecule advancing into the clinic.

Website: https://www.iqurepharma.com/


HiRO (global clinical development and APAC strategy partner)

HiRO is a global clinical research organization that supports emerging and established biotech companies in designing and executing clinical development programs across Asia Pacific and other regions. Beyond trial execution, HiRO works closely with clients to determine the most effective geography and sequencing strategy for each program, balancing regulatory pathways, patient access, cost, speed, and downstream partnering objectives. By helping companies deploy trials thoughtfully across markets such as Japan, Korea, Taiwan, Australia, Southeast Asia, and China, HiRO reduces geographic and execution risk early in development.

HiRO stood out for combining clinical rigor with global strategic judgement, enabling early stage programs to generate credible, partner ready data without single geography bias.

Website: https://en.harvestiro.com/


Qualisure Diagnostics (RNA-based thyroid classifiers)

Qualisure Diagnostics develops RNA-based classifiers that guide treatment decisions in thyroid cancer. Unlike tests focused solely on diagnosis, Qualisure’s assays inform post-diagnosis management. Clinical guideline citations support them, and the company has achieved international adoption through a decentralized deployment model.
Qualisure stood out for combining clinical relevance, guideline support, and capital-efficient international execution.

Website: https://qualisuredx.com/


Alterna Therapeutics (RNA-targeted splicing medicines)

Alterna Therapeutics develops RNA-targeted drugs designed to correct harmful cellular miscommunication driving disease. The company applies deep splicing biology to genetic and oncology indications with high unmet need, leveraging a platform with the potential to generate multiple differentiated assets over time.
Alterna stood out for its elite scientific pedigree and platform potential, with a clear opportunity to further strengthen its focus and lead-indication discipline.

Contact: Maria Buxade Fortuny maria.buxade@crg.eu

These ten companies illustrate how the bar for being partner-ready is rising across the life science ecosystem. All are early and face significant challenges ahead, but they are moving in the right direction. Taken together, this group highlights the depth of innovation and opportunity emerging across the life sciences today.

The companies highlighted in this article are not investment recommendations. Life Science Nation has not conducted formal due diligence on these technologies, finances, or operations, and no independent verification or vetting of these companies has been performed. This list reflects organizations that caught our attention through our work and travels and is intended solely for informational and educational purposes, not as a basis for any investment decision.

The Needle Issue #20

9 Dec
Juan-Carlos-Lopez
Juan Carlos Lopez
Andy-Marshall
Andy Marshall

By our count, there are now 15 bi-specific antibodies approved by the US Food and Drug Administration (the last peer-reviewed count from 2024 we found chalked up 13). This year has been a bumper year for bi-specifics — antibodies that recognize two molecular targets. Several of 2025’s largest deals have involved assets in this class, including Genmab’s $8 billion acquisition of Merus in September and Takeda’s $11.4 billion splurge on an anti-Claudin18.2 bi-specific antibody and antibody-drug conjugate (ADC) from Innovent Biologics.

Not only is this trend likely to continue, but we predict that it will expand to encompass tri- and multi-specific antibodies, the development of which is an area of intense research activity. Just a couple of weeks ago, South Korea’s Celltrion clinched a $155 million (biobucks) deal for TriOar’s tri-specific ADCs for cold tumors. And at the SITC meeting last month (which we covered in issue 19) tri-specifics were highlighted by no less than five companies: Nextpoint (B7-H7 x CD3 x TMIGD2), CrossBow (cathepsin G peptide x CD3 x CD28), TJ Biopharma (CDCP1 x CD3 x 4-1BB), Biocytogen (DLL3 x CD3 x 4-1BB) and Radiant Therapeutics (potentially tri-specific/trivalent).

Building an antibody that recognizes three or more targets at the same time is not trivial, though. There are multiple technical, clinical and regulatory hurdles that developers need to overcome before the antibody reaches patients. Why, then, go through the trouble of creating a multi-specific antibody when a bi-specific may show clinical benefit? As it turns out, there are several reasons why a multi-specific antibody may be worth the effort.

First, as tumors often escape by downregulating or mutating a single target epitope, a multi-specific antibody may reduce the likelihood of escape by simultaneously targeting multiple tumor antigens. Second, multi-specifics could increase safety and reduce toxicity of a therapy. For example, a multi-specific antibody can be designed to require co-expression of two or more antigens on the same cell to bind effectively. Healthy cells expressing only one antigen would be spared, thereby reducing off-tumor toxicity. Similarly, targeting multiple mechanisms with a single antibody may reduce the need to use several separate drugs, simplifying dosing and reducing risks for patients. Third, and perhaps most important, a multi-specific antibody can simultaneously block several disease pathways, yielding synergistic effects that a bi-specific might not achieve. In solid tumors, for example, tumor heterogeneity, limited immune-cell infiltration and an immunosuppressive microenvironment often result in therapeutic failure. Multi-specific antibodies could combine tumor targeting, immune-cell recruitment and checkpoint modulation in a single molecule.

Perhaps the best example of this comes from the field of T-cell engagers (TCEs). A tri-specific antibody can incorporate not only tumor-cell binding and CD3 engagement, but also a co-stimulatory domain, such as CD28. This can boost T-cell activation, persistence and potency more than a bi-specific that only binds to CD3.

In this regard, a recent paper in PNAS is an excellent example of the power of the approach. A research team from EvolveImmune Therapeutics reports on the development of EVOLVE, a next-generation TCE that integrates CD3 binding with CD2-mediated co-stimulation to enhance T-cell activation, durability and tumor-killing capacity, while avoiding target-independent toxicity.

Conventional CD3-bi-specific TCEs activate T cells through a stimulation signal but often fail to provide the complementary co-stimulation necessary for sustained effector function. This can result in T-cell dysfunction, reduced persistence and limited clinical durability. To address this, Jeremy Myers and his colleagues systematically compared multiple costimulatory pathways and identified CD2 as a superior target owing to its broad expression on naïve, activated and exhausted CD8⁺ T cells, and its sustained expression within tumor-infiltrating lymphocytes.

The team engineered tri-specific antibodies that fuse a CD58 extracellular domain (the natural CD2 ligand — Lymphocyte Function-Associated Antigen 3;LFA-3) to affinity-tuned CD3 binders within an IgG-like format. They showed that integrated CD2 co-stimulation substantially improves T-cell viability, proliferation, cytokine production and cytotoxicity across tumor types.

When optimizing the molecule, they found that CD3 affinity must be attenuated: high-affinity CD3 domains cause target-independent T-cell activation and cytokine release (superagonism), whereas intermediate-affinity variants retain potent tumor-directed killing with reduced off-target activation.

The EVOLVE tri-specifics outperformed matched bi-specifics targeting HER2, ULBP2, CD20 and B7-H4, with increases up to >50-fold in potency, depending on the target. The optimized tri-specifics also showed superior tumor control in vivo, achieving durable tumor regression in humanized mouse models even after cessation of the treatment.

Even though tri- and multi-specific antibodies could offer clear advantages over bi-specifics, they are not without problems. From the technical standpoint, multi-specifics combine multiple binding specificities and often non-natural architectures. This feature increases complexity at every step from discovery to manufacturing. The assembly of IgG-like multi-specifics can result in heavy/light and heavy/heavy chain mispairing leading to heterogeneous products. Although antibody engineers have come up with strategies to address this issue, each solution adds constraints to developability.

Multi-specific antibodies can also have lower expression, cause more host-cell stress and require more advanced cell-line engineering or multi-vector expression systems. Moreover, downstream purification often needs additional steps to separate mis-paired species. Similarly, multi-specific antibodies are often less stable, more aggregation-prone, and more sensitive to formulation conditions, impacting shelf life and immunogenicity risk.

It is also important to show identity, purity and functional activity for each specificity and for the multi-specific activity (that is, simultaneous binding, cell-bridging). So, establishing robust potency assays is often the greatest challenge. What is a good model system to design a development candidate going after several targets at the same time? With each additional binder, complexity in discovery and development increases.

From the clinical standpoint, although multi-specifics can potentially be safer than bi-specific antibodies, as we mentioned above, other toxicological risks exist.

TCEs have been known to trigger cytokine-release syndrome, neurotoxicity, or unexpected tissue toxicity if targets are expressed on normal tissues. First-in-human dosing strategies are therefore critical. Moreover, multi-specifics may have non-linear pharmacokinetics (target-mediated clearance for each target), and dual-target engagement can alter distribution and half-life; selecting a safe, effective dose requires integrated PK/PD modeling and biomarker strategy.

And the headaches don’t stop there. Efficacy of a multi-specific may depend on co-expression of two or more targets. Stratifying patients may therefore complicate trial enrollment and endpoint definition, not to mention that it may be necessary to develop companion diagnostics (already expensive and complex for conventional monoclonal antibodies). And related to this point, when multiple targets are engaged, it can be hard to know which specificity caused an adverse event, complicating risk–benefit evaluation and mitigation.

Finally, from the regulatory perspective, although expectations are still evolving, agencies expect a pharmacological package that reflects multi-specific mechanisms, particularly with regards to toxicology. Regulators routinely require robust control strategies to ensure product consistency. Again, this is going to be more complicated for multi-specifics because small changes in manufacturing can alter pairing or potency.

Multi-specific antibodies are gaining momentum. They represent a potentially powerful technology, but many questions still surround their development. Success may depend on striking the right balance between choosing the appropriate therapeutic indication, identifying the simplest effective format, heavy upfront developability and analytical work, and early interactions with regulators to align on pre-clinical packages.

The Needle Issue #19

25 Nov
Juan-Carlos-Lopez
Juan Carlos Lopez
Andy-Marshall
Andy Marshall

Although therapeutic antibodies represent a $160 billion-dollar annual market and comprise a third of all approved drugs, discovering new antibody molecules remains a labor-intensive process, requiring slow experimental approaches with low hit rates, such as animal immunizations and or the panning of phage- or yeast-displayed antibody libraries. The drug hunter’s dream would be to design an antibody to any target by simply entering information about that epitope into a computer. Now that dream is one step closer with a recent proof of principle peer-reviewed paper published in Nature on work disclosed last year from the team of 2024 Nobel Laureate David Baker. Baker and his colleagues at the University of Washington introduce the first generalizable machine-learning method for designing epitope-specific antibodies from scratch without relying on immunization, natural antibody repertoires, or knowledge of pre-existing binders.

Unlike small-molecule drug development, which has benefitted from an explosion of interest in the use of machine-learning models, in-silico design of antibody binders has lagged far behind. One reason for this is the paucity of high-resolution structures of human antibody–antigen pairs—currently only ~10,000 structures for 2,500 antibody-antigen pairs have been lodged in SAbDab (a subset of the RCSB Protein Data Bank). Most of these structures are soluble protein antigens, but there’s little data to model antibody binders to GPCRs, ion channels, multipass membrane proteins and glycan-rich targets, which are of most commercial interest. Overall, the antibody–antigen structural corpus is orders of magnitude smaller, noisier and narrower than that available for small molecules, lacking information on binding affinities and epitope competition maps via PDBBind/BindingDB/ChEMBL.

For these reasons, most companies have focused on machine learning prediction of developability properties—low aggregation, high thermostability, low non-specific binding, high solubility, low chemical liability/deamidation and low viscosity—for an antibody’s scaffold, rather than in-silico design of the six complementarity determining-regions (CDRs) on the end of an antibody’s two binding arms.

Even so, several recently founded startups have claimed to be using machine-learning models to predict/design antibody binders from scratch. These include Xaira TherapeuticsNabla BioChai Discovery and Aulos Bioscience.

Xaira debuted last year with >$1 billion in funding to advance models originating from the Baker lab. Nabla Bio also raised a $26 million series A in 2024, publishing preprints in 2024 and 2025 that describe its generative model (‘JAM’) for designing VHH antibodies with sub-nanomolar affinities against the G-protein coupled receptor (GPCR) chemokine CXC-motif receptor 7 (CXCR7), including several agonists. In August, Chai announced a $70 million series A financing based on its ‘Chai-2’ generative model disclosed in a preprint that details de novo antibodies/nanobodies against 52 protein targets, including platelet derived growth factor receptor (PDGFR), IL-7Rα, PD-L1, insulin receptor and tumor necrosis factor alpha, with “a 16% binding rate” and “at least one successful binder for 50% of targets”.

Finally, Aulos emerged with a $40 million series A in 2021 as a spinout from Biolojic Design. This program has generated computationally designed de novo CDR binders with picomolar affinities for epitopes on HER2, VEGF-A, and IL-2. The IL-2 antibody (imneskibart; AU-007)—designed to selectively bind the CD25-binding portion of IL-2, while still allowing IL-2 to bind the dimeric receptor on effector T cells and natural killer cells—reported positive phase 2 results in two types of cancer just last week. Absci, another more established company, has also been developing de novo antibodies, publishing a generative model for de novo antibody design of CDR3 loops against HER2, VEGF-A and SARS-CoV-2 S protein receptor binding domain.

Overall, though, computational efforts have largely optimized existing antibodies or proposed variants once a binder already exists. Recent generative approaches have often needed a starting binder, leaving de novo, epitope-specific antibody creation as an unmet goal. The Baker paper now provides a generalizable, open-source machine-learning approach that can find low nanomolar antibody binders to a wide range of targets.

To accomplish this task, the authors use RFdiffusion, a generative deep-learning framework for protein design, extending its capabilities by fine-tuning it specifically on antibody–antigen structures. Their goal was to enable the in-silico creation of heavy-chain variable domains (VHHs), single-chain variable fragments (scFvs), and full antibodies that target user-defined epitopes with atomic-level structural accuracy.

Their approach integrates three major components: backbone generation with a modified RFdiffusion model, CDR sequence design via the algorithm ProteinMPNN, and structural filtering using a fine-tuned RoseTTAFold2 predictor (the authors note that improved predictions can now be obtained by swapping out RoseTTAFold2 for AlphaFold3 developed last year by Google Deepmind and Isomorphic Labs). The refined RFdiffusion model can design new CDRs while preserving a fixed antibody framework and sampling diverse docking orientations around a target epitope. The resulting models generalize beyond training data, producing CDRs unlike any found in natural antibodies.

Baker and his colleagues created VHHs against several therapeutically relevant targets, including influenza H1 haemagglutinin, Clostridium difficile toxin B (TcdB), SARS-CoV-2 receptor-binding domain, and other viral or immune epitopes. High-throughput screening via yeast display or purified expression led to the identification of multiple binders, typically with initial low affinities in the tens to hundreds of nanomolar range. Cryo-EM confirmed near-perfect structural agreement between design models and experimental complexes, particularly for influenza haemagglutinin and TcdB, demonstrating atomic-level accuracy across the binding region and the designed CDR loops. To enhance affinity, the authors used OrthoRep, an in-vivo continuous evolution system, for the affinity maturation of selected VHHs. The affinity of the resulting VHHs improved by roughly two orders of magnitude while retaining the original binding orientation.

Baker and his team further challenged their method with the more difficult problem of de-novo scFv design, which requires simultaneous construction of six CDR loops across two amino acid chains. The team introduced a combinatorial assembly strategy in which heavy and light chains from structurally similar designs were mixed to overcome cases where a single imperfect CDR would compromise binding. This enabled the discovery of scFvs targeting the Frizzled epitope of TcdB and a PHOX2B peptide–MHC complex. Cryo-EM validation of two scFvs showed that all six CDR loops matched the design model with near-atomic precision.

Future work is needed to extend de novo antibody prediction via this method to tougher target classes, such as membrane proteins. Clearly, modeling across all six CDR loops and the heavy and light chains remains a hard problem; indeed, the paper’s marquee result was designing a single scFv where all six CDRs matched the designed pose at high resolution; more generally, scaling reliable heavy- and light-chain co-design beyond a few cases remains an open engineering challenge that future methods will need to solve. For the field to gather momentum, benchmarking efforts like the AIntibody challenge will be needed, together with public efforts to create datasets of negative binding data, akin to those described in a paper published earlier this year.

Overall, the Baker paper is seminal work that establishes a practical and accurate approach to designing epitope-specific antibodies from scratch. It represents a major advance in the development of therapeutic antibody discovery.

The Needle Issue #18

12 Nov
Juan-Carlos-Lopez
Juan Carlos Lopez
Andy-Marshall
Andy Marshall

This year’s Nobel Prize for Physiology or Medicine was awarded to Mary Brunkow, Fred Ramsdell and Shimon Sakaguchi for the discovery of regulatory T cells (Tregs)— white blood cells whose role it is to suppress overactivation of our immune system. The prize was unusual in that Brunkow made her discoveries while leading an industry R&D team at Darwin Molecular (now defunct). Ramsdell and Sakaguchi are also co-founders of two prominent biotech companies developing Treg therapies: Ramsdell’s Sonoma Biotherapeutics is developing autologous Treg therapies against arthritis and hidradenitis suppurativa, together with a LFA3-IgG1 fusion molecule for depleting CD2+ effector T cells; and Sakaguchi’s Coya Therapeutics is developing a low-dose interleukin 2 (IL-2)/CTLA-IgG1 fusion combination for amyotrophic lateral sclerosis and other neurodegenerative disorders; the Nobel prize likely helped boost Coya’s announcement in October to raise $20 million in follow-on funding on the public markets.

Tregs have long attracted the attention of drug developers interested in autoimmune conditions, diseases where the immune system is overactive. But progress in this field has been slow, and the first clinical results for T-reg cell therapies are only now beginning to emerge in liver transplantation and kidney transplantation. (Low-dose IL-2 treatments that promote Tregs have also begun to show promise in lupus and systemic sclerosis patients.)

The overarching idea behind Treg cell therapy has been to isolate these cells from a patient, introduce/upregulate expression of the FOXP3 transcription factor that marks them from other T cells, and expand them before giving them back to the patient.

Early attempts to develop this autologous therapy failed in part because Tregs are less numerous in the peripheral blood than effector CD4/CD8 T cells, difficult to isolate and problematic to expand. Moreover, the isolated Tregs are polyclonal, targeting multiple antigens. Approaches that expanded this unmodified polyclonal population of cells and put them back into patients resulted in a ‘diluted’, clinically insignificant, therapeutic effect.

To address this problem, companies are now turning to leverage advances in the chimeric antigen receptor (CAR)-T cell therapy field. A whole slew of Treg cell therapies is being engineered with CARs or T-cell receptors (TCRs), allowing targeting to specific antigens in specific organs.

As we mentioned above, the most advanced of these are in the organ-transplantation field, where chronic immunosuppression renders patients susceptible to infections that can be lethal. Sangamo Therapeutics’ TX200 and Quell Therapeutics’ QEL-001 are CAR-Treg therapies for renal- and liver-transplant rejection, respectively. These assets, which are in phase 1/2, both bind to human leukocyte antigen HLA-A2, which is exclusively expressed on the transplanted donor organ, ensuring that the Tregs travel exclusively to the place where they are needed. Elsewhere, Sonoma is also developing an autologous CAR-Treg therapy, SBT-77-7101, that targets citrullinated proteins abundant in rheumatoid arthritis (for which Sonoma recently announced positive interim phase 1 data) and the skin condition hidradenitis suppurativa.

A second focus for companies has been on TCR-engineered Tregs. The great theoretical advantages of TCRs over CARs are that 1) they have high sensitivity at low antigen density, 2) they focus exclusively on antigen-presenting cells which then reeducate/suppress effector T cells; 3) they don’t bind soluble antigen and 4) most autoimmune diseases are driven by intracellular proteins presented as processed peptides in the context of HLA. As yet, however, only a few companies are pursuing the approach. One example is GentiBio, which is developing GNTI-122 for type 1 diabetes. This Treg product expresses a TCR targeting a fragment (IGRP 305–324) of the pancreatic islet-specific antigen glucose-6-phosphatase catalytic subunit-related protein (IGRP). Another pioneer in this area, Abata Therapeutics, had also been developing a TCR-engineered Treg therapy (targeting myelin peptide/HLA-DRB1*15:01 for multiple sclerosis); however, the frosty financing environment in the first half of 2025 meant it ran out of cash and Abata closed its doors in August.

One challenge that all Treg cell therapies face is the plasticity of these cells and their tendency to shape shift into effector T cells, a phenotypic change that, in the therapeutic setting, could lower efficacy or even exacerbate pathology. One approach to address this problem has been to modify the cells by overexpressing the transcription factor FOXP3, the master regulator of Treg development. For example, as methylation of the FOXP3 promoter under inflammatory conditions can turn Tregs Into effector T cells, Quell’s Tregs are engineered with a methylation-resistant FOXP3 that compels the cells to remain in their suppressor phenotype. And to bring us back to where we started, Nobel laureate Sakaguchi turns out to be a serial entrepreneur, founding another company, Regcell, that recently relocated from Japan to the US on the back of a $45.8 million financing back in March. The company is using small-molecule CDK8/19 inhibitors that act as epigenetic modulators to lock in FOXP3+ Tregs that show a stable suppressive phenotype in vivo.

But Treg cell therapies still face stiff competition. Ironically, perhaps, from their antithesis: the effector CAR-T cell. Pioneering work by Georg Schett’s group at Friedrich Alexander University Erlangen-Nuremberg has galvanized numerous efforts to develop CAR-T depleters of pathogenic B-cell or plasma-cell subsets in autoimmune conditions. Evidence is growing for the clinical efficacy of this approach in diseases such as lupus or myasthenia gravis.

But the holy grail would be to dispense with cell therapy altogether and promote Treg activity in situ, without the need for purification and modification/expansion outside the body. By focusing on injectable biologics, many companies can bring products to market that are easily accommodated into current clinical practice, dispensing with the need for leukopheresis (an approach alien to most rheumatologists) and the complex logistics of ex vivo cell therapy.

Nektar Therapeutics’ rezpegaldesleukin is a pegylated IL-2 given at low doses that acts on CD25, the high-affinity IL-2 receptor enriched in Tregs. The company recently reported positive phase 2 data in atopic dermatitis. Elsewhere, Egle Therapeutics and Mozart Therapeutics have discovery programs developing bispecific antibody Treg engagers for multiple autoimmune diseases. TrexBio has developed a peptide agonist of tumor necrosis factor receptor 2 (TNFR2), announcing in June the dosing of its first participant in a phase 1 trial for atopic dermatitis and other inflammatory diseases. Zag Bio is another T-cell engager play that recently came out of stealth,

The Treg field can rightly celebrate its Nobel recognition and the progress made towards bringing this cell type to patients. Although it will likely be several years before we gain a full picture of how Treg biology can be leveraged to fight autoimmune disease, the field eagerly awaits the readout from early efficacy trials of cell therapies and potentially an FDA-approved product for the biologics in later development.